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Abstract  An algorithm is proposed for tracking objects in real time. The algorithm is based on neural network 

implemented on GPU. Investigation and parameter optimization of the algorithm are realized. Tracking process has 

accelerated by 10 times and the training process has accelerated by 2 times versus to the sequential algorithm version. 

The maximum resolution of the frame for real-time tracking and the optimum frame sampling from a movie are 

calculated. 
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1. Introduction 

Currently, the distribution and development of video 

takes enormous size. One of the most common problems 

in this field is the object tracking. The object t racking 

algorithms are used for various purposes: identificat ion of 

specific moving targets, fixing car license plates, 

imposition of various visual effects to the video etc. 

To implement tracking objects, many methods and 

algorithms are developed but often they are highly  

specialized and are stable only in a certain type of v ideo. 

In good conditions (clear images at a low speed of the 

object), these algorithms work well but in case of noise, 

increasing the speed of the object and reducing its size, the 

algorithms glitch. On top of the object tracking algorithms 

are quite labor intensive and forcing compress the 

processed image or otherwise simplify  processed 

informat ion. In  this regard, there is a problem to develop 

effective algorithms for robust object tracking.  

The objective of this work is to develop a parallel 

algorithm, and to apply a graphic accelerator to speed up 

the image processing without reducing its size.  

We obtain the following results: 

1. The sequential neural network object-t racking 

algorithm [1,2] is investigated, and its parallel version is 

developed using the CUDA technology [3]. 

2. A comparison of serial and parallel algorithms is 

realized on several parameters: the speed of object 

tracking and the neural network train ing, and the 

maximum size of the frame acceptable for real-t ime 

processing. The parallel algorithm speedup is more than 

10. 

2. Problem Statement 

There are many different systems for tracking objects. 

These systems use different algorithms and operate with 

different input data. The most effective implementations 

use complex and expensive equipment: multip le cameras 

and record color video or video in the infrared spectrum. 

On the one hand, the color image allows us to use many 

different algorithms, but on the other hand, these 

algorithms can be time-consuming and may not always 

work properly (for example, in low-light) [4]. A lgorithms 

for monochrome images can use a cheaper technology, but 

are less effective and often  use low-resolution frame, 

which is caused by the specific equipment [5]. 

The algorithm [1] is a fairly simple algorithm that 

works with monochrome images of low resolution 

(320x240), which during the pre-processing of data is 

reduced to 80x60. However, we can create a fast 

algorithm that works with a large frame resolution in  real-

time on a fairly low-cost hardware. The key to this 

solution lies in the use of graphics cards as devices that 

perform massively parallel computing [3]. 

The overall objective is to track the object in images 

and video that is to determine the coordinates of the center 

of the object on the basis of information obtained from the 

image. Since one of the goals is to observe the object in 

the video in real time, then the algorithm for determin ing 

the coordinates of the center of the object is superimposed 

on speed limitation: the processing of a single frame 

should take no more than 1/25 sec. = 0.04 sec. Another 

aim is to develop an algorithm that allows to process the 

entire frame, with no loss of information. At the same t ime,  

in [1] every fourth pixel of the image is used only to 

increase the speed of the algorithm. 

3. Neural Network and Its Training 

We used sigmoid feedforward network with one hidden 

layer [1,2]. Before processing the normalization of 
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brightness of monochrome images in the range (0, 1) is 

performed. 

The function of the neural network can be div ided into 

three parts: 

1) Input vector x is mult iplied by the weight matrix 
1W  

of the hidden layer and then added to the displacement 

vector 
1b : 

 (1)

1 1a W x b    (1) 

2) The activation function f is applied to the vector 
(1)a : 

 (1)( )u f a . (2) 

3) The resulting vector u is multip lied  by the weight 

matrix 
2W of the output layer and then added to the 

displacement vector 
2b : 

 
2 2y W u b   . (3) 

As a result of the study of behavior of network with 

different numbers of neurons in the hidden layer, we 

decide to use the 64 neurons that provide sufficient speed 

and accuracy of the algorithm. In the output layer there are 

only two neurons, each of which should give on the output 

one of the coordinates of the desired object. 

To train  the neural network a set of images with known 

coordinates of the center of the object is used. As training 

algorithm the backpropagation algorithm [2] was chosen. 

Minimized the objective function of the neural network 

error is the quantity 

 
2

,

1
( ) ( ( ) ( )) ,

2
j j

j x

E w y x d x   (4) 

where ( )jy x  is the real output state of the neuron j of the 

output layer of the neural network when the input image 

x  is applied, ( )jd x  is the desired output state of the 

neuron. 

Minimization is the method of gradient descent: 
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( )

n
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ij
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where 
( )n

ijw  is the change of the component of the 

matrix of weights 
1W  ( 1n  ) or 

2W  ( 2n  ),  0,1n  . 

The init ial values of weights are set randomly.  

Train ing by backpropagation is in  accordance with the 

following paragraphs: 

1. Select the first input vector of the training set.  

2. Supply the selected vector to the input of the neural 

network and calculate its output.  

3. Calculate the erro r for the output layer:  

 
(2)

l l ly d    

4. Calculate the change of weights for the output layer:  

 
(2) (2)

2ij j iw u       . 

5. Calculate the erro r for the hidden layer:  

 
(1) (2) (2)

(1)
( )

j

j k jk

k j

du
w

da
     . 

6. Calculate the change of weights for the hidden layer:  

 
(1) (1)

1ij j iw x       , 

where 
ix  is the component of the input vector x . 

7. Adjust the network weights:  

 
( ) ( ) ( )( ) ( 1) ( )n n n

ij ij ijw t w t w t    , 

where t is the number of iteration of the training process. 

8. If the training set has untreated vectors, select a 

vector and go to step 2.  

9. Find the total error on the test set by the formula (4). 

If the error fo r the prev ious image is more than the error 

for the current image x , increase values , 1,2n n  , else 

decrease them. If the error is less than the previous record 

( )rR w , change record: 

 ( ) ( )rR w E w . 

Save the values of the weights  

 
rw w  

and go to step 1. 

If the record  has not been changed for a certain number 

of passes of steps 1-8, complete the train ing and restore 

the most successful weight record 
rw . 

Train ing rates 
1  and 

2  are ad justed by using the 

parameters 0 1d  , 1i   and 1k  . All these 

parameters are close to 1. For example, 1.1k  , 

0.9d  , 1.05i  . If ( ) ( 1)E t E t k    (the error is 

increased), then 
1  and 

2  are multip lied by 
d  

(decreased), else they are mult iplied by 
i  (increased). 

The parameters k , 
d  и 

i  are determined 

experimentally.  

To create a set of images the program Autodesk Maya 

2011 [6] was used, which created a three-dimensional 

model of the gear (Figure 1). 

For this model, using formulas depending on the frame 

number, the fo llowing parameters are evaluated: the 

coordinates of the object in the frame, the angle of rotation 

of the object in three axes and the object size. Then the 

object video was obtained fo r testing the object tracking. 

A program was realized for describing the object 

movement and recording the coordinates of the center of 

the object to the file. 

 

Figure 1. The gear image  
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To implement the parallel algorithm, the CUDA [3] 

hardware and software architecture is used. It performs 

calculations using graphics processors NVIDIA enabled 

for GPGPU (general purpose computations on graphics 

cards). For preliminary  processing and output of 

informat ion in the course of the neural network train ing 

the computer vision library OpenCV [7] is used. 

4. CUDA Implementation 

CUDA (Compute Unified Device Arch itecture) is a 

framework which allows to develop C/C++ programs that 

execute specific functions (so-called kernels) on a CUDA-

compatible graphics card in parallel. Th is graphics card is 

called  device in this context . The computer on which the 

device is installed is called  host. An instance of a kernel is 

called a grid. It consists of an arbitrary number of blocks. 

Each b lock consists of the same number of threads, which 

all execute the kernel’s code in parallel.  

During  the execution o f a grid, blocks and  threads are 

mapped to the multiprocessors of the GPU (Graphics 

Processing Unit) and their (scalar) processors, respectively. 

A kernel may use mult iple kinds of memory: registers, 

shared memory, texture cache and constant cache are fast, 

but small on-chip memory, whereas device memory is 

much larger (up to 2GB), but has a drastically higher 

latency. Registers are accessible only from the current 

thread, shared memory is accessible from all threads of 

one block. Data transfer between blocks as well as 

between the host and the device can only be accomplis hed 

via the device memory.  

All neurons of one layer perform calculat ions 

independently. In this regard, we decided to implement 

parallel versions of the neural network main  functions and 

its weight train ing procedures. 

We have three functions containing a large number of 

operations that can be performed in parallel. These 

functions are implemented as core GPU functions running 

in parallel on mult iple threads. 

The most noteworthy is the kernel function (1). 

Similarly running kernel function (3). The function (2) is 

very simple, and its GPU realization does not require 

optimization. 

In the preliminary version of the function (1) 

implementation, each thread performs the multip lication 

of one row of the matrix 
1W  by the vector x. The number 

of threads corresponds to the number of neurons in the 

hidden layer. Each thread performs the operations of 

addition and multip licat ion, but the global memory GPU 

greatly slowing the threads. 

Besides the Computer Visual Profiler shows that we are 

not using the combining of requests to the memory: when 

successive threads turn into consecutive memory locations, 

the treatment can be combined into one warp and instead 

group of calls we have in fact only one call. The 

maximum number of threads within the warp is 16 or 32. 

In the end, we decided to introduce a number of 

changes, which can eliminate these disadvantages: 

1) Increase the number of threads so that each thread 

only multiplies the vector of 16 numbers. This increases 

the payload on the GPU, more threads run in parallel, 

there is a need for a modified kernel function, 

summarizing the results of the threads. 

2) Use shared memory instead of global one. This 

memory is allocated to each b lock of threads and can be 

used by all threads of the block [3]. The idea is to get a 

fragment of global memory used by all the threads of the 

block in  shared memory. Each thread makes only  one 

reference to the corresponding cell of global memory by 

copying the value in shared memory, and the other data 

the thread will be ab le to get from the shared memory.  

3) Transpose matrix 
1W  to access elements of the 

matrix in global memory by warp. Init ially every thread 

worked with a row vector as with consecutive memory  

elements. Thus, the threads, going after each other for 

numbering, refer to different segments of memory. Matrix 

transposition allows the threads to work with a column 

vector that combines consecutive threads in warp.  

As a result of these modifications, the total execution 

time fo r the kernel function of the first block on the 

program run decreased from 30% of the GPU time to 1% 

plus 3% to the kernel accumulating function appeared in 

the course of the change 1. All uploads from the global 

memory and downloads to the global GPU memory are 

coalesced. The function loop branching and the warp  

starting took very little t ime. 

In the functions of adjusting weights, operations (steps 

4-7) are o rganized into kernel functions that run in parallel 

on multip le threads. However, the specifics of these 

blocks does not allow them a lot faster and fo rces to use 

matrix transposition before calling the function tuning the 

weights and after that, because the next function iterat ion 

must have transposed matrix of weights. 

5. Experiments 

The algorithm has a number of options that are 

determined experimentally. One such parameter is the 

number of neurons in the hidden layer. Due to the nature 

of parallel implementation of the algorithm we consider 

the number of neurons multiples of 16 (the size of a warp  

equals 16). As a result, it is observed that 16 and 32 

neurons cannot provide the storing patterns. The 48 

neurons cope with learning on ly small t rain ing set. The 64 

neurons provided a good degree of storing patterns and 

satisfactory training speed. Further increases in the 

number of neurons leads only to reduce the speed of the 

neural network’s training and functioning.  

0

50

100

150

200

250

300

350

1 of 40 1 of 20 1 of 10 1 of  8 1 of 4

The sampling rate

M
a
x
im

u
m

 e
rr

o
r

 

Figure 2. Error in determining the object coordinates  

In addition to the above parameters, attention also 

deserves the frequency with which you want to take 
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pictures from the video in order to effect ively train a 

neural network.  

To train the neural network a sequence of 200 images 

with a resolution 80x60, 160x120, 320x240, 640x480, 

800x600, and 1280x960 was used. A testing sequence has 

also 200 images. Figure 2 shows that even at a frequency 

of taking one frame out of ten, a satisfactory result is 

achieved (sum of maximum deviat ions in both coordinates 

is 50 pixels when the object size is 300x300 in  frame with 

size 1280x960). Further increase of the frame rate only 

slows the learn ing process, not giving a significant gain  in  

quality. Number of train ing cycles (epochs) was about 

2200.  

Testing the parallel and serial implementations were 

carried out on a computer with the following 

characteristics: CPU - AMD Athlon 7750, 2 cores at 2.7 

GHz, GPU - NVIDIA GeForce 9800 GT with 512MB 

memory, the number of thread processors is 112. 

Development of a parallel version was conducted using 

Cuda Toolkit 4.1. 

The main investigated parameter is the speed of the 

neural network that is the main function of object tracking.  

0

0,2

0,4

0,6

T
im

e

GPU

GPU 0,0002 0,0007 0,0024 0,0095 0,0145 0,035

CPU 0,002 0,007 0,027 0,115 0,186 0,46

80x60 160x120 320x240 640x480 800x600 1280x960

 

Figure 3. The time of the neural network functioning on CPU and GPU 

From Figure 3 it follows that the parallel 

implementation of the neural network on GPU can 

increase the linear d imensions of the processed image by 4 

times (from 320240 to 1280960). From Figure 3 and 

Figure 4 it  follows that the processing of frame sequence 

by the neural network is accelerated by an average of 10. 

The training process is accelerated by an average of only 2 

(Figure 5). This is due to the need to transpose the weight 

matrix in the implementation of training a neural network 

on the GPU. 
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Figure 4. Speedup of parallel implementation 
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Figure 5. Speedup of training neural network at various frame sizes 

6. Conclusion 

An algorithm of tracking objects in real time, based on 

neural network learning algorithm with back propagation, 

is implemented in  parallel on GPU. Investigation and 

parameter optimization of the algorithm are realized. 

Tracking process has accelerated by 10 times and the 

training process has accelerated by 2 times versus to the 

sequential algorithm version. The maximum resolution of 

the frame, suitable for real-time tracking, and the optimum 

frequency of capture frames from a movie in the train ing 

set are calculated. 

The obtained algorithm acceleration is not the possible 

maximum, so further development in  this area can g ive 

better results, both in performance on the p revious frame 

resolution and the ability to handle a greater volume of 

informat ion. It may be possible to develop algorithms 

training the neural network in  real time, i.e. in a process of 

the object tracking. 
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