
Journal of Computer Sciences and Applications, 2013, Vol. 1, No. 1, 1-4

Available online at http://pubs.sciepub.com/jcsa/1/1/1

© Science and Education Publishing
DOI:10.12691/jcsa-1-1-1

Real-Time Object Tracking by CUDA-accelerated

Neural Network

Mikhail S. Tarkov
1,*

, Sergey V. Dubynin
2

1A.V. Rzhanov’s Institute of Semiconductor Physics SB RAS, Novosibirsk, Russia
2Novosibirsk State University, Novosibirsk, Russia

*Corresponding author: tarkov@isp.nsc.ru

Received December 19, 2012; Revised January 31, 2013; Accepted February 28, 2013

Abstract An algorithm is proposed for tracking objects in real time. The algorithm is based on neural network

implemented on GPU. Investigation and parameter optimization of the algorithm are realized. Tracking process has

accelerated by 10 times and the training process has accelerated by 2 times versus to the sequential algorithm version.

The maximum resolution of the frame for real-time tracking and the optimum frame sampling from a movie are

calculated.

Keywords: object tracking, neural network, parallel computing, CUDA

1. Introduction

Currently, the distribution and development of video

takes enormous size. One of the most common problems

in this field is the object tracking. The object t racking

algorithms are used for various purposes: identificat ion of

specific moving targets, fixing car license plates,

imposition of various visual effects to the video etc.

To implement tracking objects, many methods and

algorithms are developed but often they are highly

specialized and are stable only in a certain type of v ideo.

In good conditions (clear images at a low speed of the

object), these algorithms work well but in case of noise,

increasing the speed of the object and reducing its size, the

algorithms glitch. On top of the object tracking algorithms

are quite labor intensive and forcing compress the

processed image or otherwise simplify processed

informat ion. In this regard, there is a problem to develop

effective algorithms for robust object tracking.

The objective of this work is to develop a parallel

algorithm, and to apply a graphic accelerator to speed up

the image processing without reducing its size.

We obtain the following results:

1. The sequential neural network object-t racking

algorithm [1,2] is investigated, and its parallel version is

developed using the CUDA technology [3].

2. A comparison of serial and parallel algorithms is

realized on several parameters: the speed of object

tracking and the neural network train ing, and the

maximum size of the frame acceptable for real-t ime

processing. The parallel algorithm speedup is more than

10.

2. Problem Statement

There are many different systems for tracking objects.

These systems use different algorithms and operate with

different input data. The most effective implementations

use complex and expensive equipment: multip le cameras

and record color video or video in the infrared spectrum.

On the one hand, the color image allows us to use many

different algorithms, but on the other hand, these

algorithms can be time-consuming and may not always

work properly (for example, in low-light) [4]. A lgorithms

for monochrome images can use a cheaper technology, but

are less effective and often use low-resolution frame,

which is caused by the specific equipment [5].

The algorithm [1] is a fairly simple algorithm that

works with monochrome images of low resolution

(320x240), which during the pre-processing of data is

reduced to 80x60. However, we can create a fast

algorithm that works with a large frame resolution in real-

time on a fairly low-cost hardware. The key to this

solution lies in the use of graphics cards as devices that

perform massively parallel computing [3].

The overall objective is to track the object in images

and video that is to determine the coordinates of the center

of the object on the basis of information obtained from the

image. Since one of the goals is to observe the object in

the video in real time, then the algorithm for determin ing

the coordinates of the center of the object is superimposed

on speed limitation: the processing of a single frame

should take no more than 1/25 sec. = 0.04 sec. Another

aim is to develop an algorithm that allows to process the

entire frame, with no loss of information. At the same t ime,

in [1] every fourth pixel of the image is used only to

increase the speed of the algorithm.

3. Neural Network and Its Training

We used sigmoid feedforward network with one hidden

layer [1,2]. Before processing the normalization of

 Journal of Computer Sciences and Applications 2

brightness of monochrome images in the range (0, 1) is

performed.

The function of the neural network can be div ided into

three parts:

1) Input vector x is mult iplied by the weight matrix
1W

of the hidden layer and then added to the displacement

vector
1b :

 (1)

1 1a W x b   (1)

2) The activation function f is applied to the vector
(1)a :

 (1)()u f a . (2)

3) The resulting vector u is multip lied by the weight

matrix
2W of the output layer and then added to the

displacement vector
2b :

2 2y W u b   . (3)

As a result of the study of behavior of network with

different numbers of neurons in the hidden layer, we

decide to use the 64 neurons that provide sufficient speed

and accuracy of the algorithm. In the output layer there are

only two neurons, each of which should give on the output

one of the coordinates of the desired object.

To train the neural network a set of images with known

coordinates of the center of the object is used. As training

algorithm the backpropagation algorithm [2] was chosen.

Minimized the objective function of the neural network

error is the quantity

2

,

1
() (() ()) ,

2
j j

j x

E w y x d x  (4)

where ()jy x is the real output state of the neuron j of the

output layer of the neural network when the input image

x is applied, ()jd x is the desired output state of the

neuron.

Minimization is the method of gradient descent:

 ()

()

n

ij n n

ij

E
w

w



  



where
()n

ijw is the change of the component of the

matrix of weights
1W (1n ) or

2W (2n ),  0,1n  .

The init ial values of weights are set randomly.

Train ing by backpropagation is in accordance with the

following paragraphs:

1. Select the first input vector of the training set.

2. Supply the selected vector to the input of the neural

network and calculate its output.

3. Calculate the erro r for the output layer:

(2)

l l ly d  

4. Calculate the change of weights for the output layer:

(2) (2)

2ij j iw u      .

5. Calculate the erro r for the hidden layer:

(1) (2) (2)

(1)
()

j

j k jk

k j

du
w

da
    .

6. Calculate the change of weights for the hidden layer:

(1) (1)

1ij j iw x      ,

where
ix is the component of the input vector x .

7. Adjust the network weights:

() () ()() (1) ()n n n

ij ij ijw t w t w t   ,

where t is the number of iteration of the training process.

8. If the training set has untreated vectors, select a

vector and go to step 2.

9. Find the total error on the test set by the formula (4).

If the error fo r the prev ious image is more than the error

for the current image x , increase values , 1,2n n  , else

decrease them. If the error is less than the previous record

()rR w , change record:

 () ()rR w E w .

Save the values of the weights

rw w

and go to step 1.

If the record has not been changed for a certain number

of passes of steps 1-8, complete the train ing and restore

the most successful weight record
rw .

Train ing rates
1 and

2 are ad justed by using the

parameters 0 1d  , 1i  and 1k  . All these

parameters are close to 1. For example, 1.1k  ,

0.9d  , 1.05i  . If () (1)E t E t k   (the error is

increased), then
1 and

2 are multip lied by
d

(decreased), else they are mult iplied by
i (increased).

The parameters k ,
d и

i are determined

experimentally.

To create a set of images the program Autodesk Maya

2011 [6] was used, which created a three-dimensional

model of the gear (Figure 1).

For this model, using formulas depending on the frame

number, the fo llowing parameters are evaluated: the

coordinates of the object in the frame, the angle of rotation

of the object in three axes and the object size. Then the

object video was obtained fo r testing the object tracking.

A program was realized for describing the object

movement and recording the coordinates of the center of

the object to the file.

Figure 1. The gear image

3 Journal of Computer Sciences and Applications

To implement the parallel algorithm, the CUDA [3]

hardware and software architecture is used. It performs

calculations using graphics processors NVIDIA enabled

for GPGPU (general purpose computations on graphics

cards). For preliminary processing and output of

informat ion in the course of the neural network train ing

the computer vision library OpenCV [7] is used.

4. CUDA Implementation

CUDA (Compute Unified Device Arch itecture) is a

framework which allows to develop C/C++ programs that

execute specific functions (so-called kernels) on a CUDA-

compatible graphics card in parallel. Th is graphics card is

called device in this context . The computer on which the

device is installed is called host. An instance of a kernel is

called a grid. It consists of an arbitrary number of blocks.

Each b lock consists of the same number of threads, which

all execute the kernel’s code in parallel.

During the execution o f a grid, blocks and threads are

mapped to the multiprocessors of the GPU (Graphics

Processing Unit) and their (scalar) processors, respectively.

A kernel may use mult iple kinds of memory: registers,

shared memory, texture cache and constant cache are fast,

but small on-chip memory, whereas device memory is

much larger (up to 2GB), but has a drastically higher

latency. Registers are accessible only from the current

thread, shared memory is accessible from all threads of

one block. Data transfer between blocks as well as

between the host and the device can only be accomplis hed

via the device memory.

All neurons of one layer perform calculat ions

independently. In this regard, we decided to implement

parallel versions of the neural network main functions and

its weight train ing procedures.

We have three functions containing a large number of

operations that can be performed in parallel. These

functions are implemented as core GPU functions running

in parallel on mult iple threads.

The most noteworthy is the kernel function (1).

Similarly running kernel function (3). The function (2) is

very simple, and its GPU realization does not require

optimization.

In the preliminary version of the function (1)

implementation, each thread performs the multip lication

of one row of the matrix
1W by the vector x. The number

of threads corresponds to the number of neurons in the

hidden layer. Each thread performs the operations of

addition and multip licat ion, but the global memory GPU

greatly slowing the threads.

Besides the Computer Visual Profiler shows that we are

not using the combining of requests to the memory: when

successive threads turn into consecutive memory locations,

the treatment can be combined into one warp and instead

group of calls we have in fact only one call. The

maximum number of threads within the warp is 16 or 32.

In the end, we decided to introduce a number of

changes, which can eliminate these disadvantages:

1) Increase the number of threads so that each thread

only multiplies the vector of 16 numbers. This increases

the payload on the GPU, more threads run in parallel,

there is a need for a modified kernel function,

summarizing the results of the threads.

2) Use shared memory instead of global one. This

memory is allocated to each b lock of threads and can be

used by all threads of the block [3]. The idea is to get a

fragment of global memory used by all the threads of the

block in shared memory. Each thread makes only one

reference to the corresponding cell of global memory by

copying the value in shared memory, and the other data

the thread will be ab le to get from the shared memory.

3) Transpose matrix
1W to access elements of the

matrix in global memory by warp. Init ially every thread

worked with a row vector as with consecutive memory

elements. Thus, the threads, going after each other for

numbering, refer to different segments of memory. Matrix

transposition allows the threads to work with a column

vector that combines consecutive threads in warp.

As a result of these modifications, the total execution

time fo r the kernel function of the first block on the

program run decreased from 30% of the GPU time to 1%

plus 3% to the kernel accumulating function appeared in

the course of the change 1. All uploads from the global

memory and downloads to the global GPU memory are

coalesced. The function loop branching and the warp

starting took very little t ime.

In the functions of adjusting weights, operations (steps

4-7) are o rganized into kernel functions that run in parallel

on multip le threads. However, the specifics of these

blocks does not allow them a lot faster and fo rces to use

matrix transposition before calling the function tuning the

weights and after that, because the next function iterat ion

must have transposed matrix of weights.

5. Experiments

The algorithm has a number of options that are

determined experimentally. One such parameter is the

number of neurons in the hidden layer. Due to the nature

of parallel implementation of the algorithm we consider

the number of neurons multiples of 16 (the size of a warp

equals 16). As a result, it is observed that 16 and 32

neurons cannot provide the storing patterns. The 48

neurons cope with learning on ly small t rain ing set. The 64

neurons provided a good degree of storing patterns and

satisfactory training speed. Further increases in the

number of neurons leads only to reduce the speed of the

neural network’s training and functioning.

0

50

100

150

200

250

300

350

1 of 40 1 of 20 1 of 10 1 of 8 1 of 4

The sampling rate

M
a
x
im

u
m

 e
rr

o
r

Figure 2. Error in determining the object coordinates

In addition to the above parameters, attention also

deserves the frequency with which you want to take

 Journal of Computer Sciences and Applications 4

pictures from the video in order to effect ively train a

neural network.

To train the neural network a sequence of 200 images

with a resolution 80x60, 160x120, 320x240, 640x480,

800x600, and 1280x960 was used. A testing sequence has

also 200 images. Figure 2 shows that even at a frequency

of taking one frame out of ten, a satisfactory result is

achieved (sum of maximum deviat ions in both coordinates

is 50 pixels when the object size is 300x300 in frame with

size 1280x960). Further increase of the frame rate only

slows the learn ing process, not giving a significant gain in

quality. Number of train ing cycles (epochs) was about

2200.

Testing the parallel and serial implementations were

carried out on a computer with the following

characteristics: CPU - AMD Athlon 7750, 2 cores at 2.7

GHz, GPU - NVIDIA GeForce 9800 GT with 512MB

memory, the number of thread processors is 112.

Development of a parallel version was conducted using

Cuda Toolkit 4.1.

The main investigated parameter is the speed of the

neural network that is the main function of object tracking.

0

0,2

0,4

0,6

T
im

e

GPU

GPU 0,0002 0,0007 0,0024 0,0095 0,0145 0,035

CPU 0,002 0,007 0,027 0,115 0,186 0,46

80x60 160x120 320x240 640x480 800x600 1280x960

Figure 3. The time of the neural network functioning on CPU and GPU

From Figure 3 it follows that the parallel

implementation of the neural network on GPU can

increase the linear d imensions of the processed image by 4

times (from 320240 to 1280960). From Figure 3 and

Figure 4 it follows that the processing of frame sequence

by the neural network is accelerated by an average of 10.

The training process is accelerated by an average of only 2

(Figure 5). This is due to the need to transpose the weight

matrix in the implementation of training a neural network

on the GPU.

0

2

4

6

8

10

12

14

Speedup 10 10 11.25 12.10526316 12.82758621 13.14285714

80x60 160x120 320x240 640x480 800x600 1280x960

Figure 4. Speedup of parallel implementation

0

0.5

1

1.5

2

2.5

80x60 160x120 320x240

Frame size

S
p

e
e
d

u
p

Figure 5. Speedup of training neural network at various frame sizes

6. Conclusion

An algorithm of tracking objects in real time, based on

neural network learning algorithm with back propagation,

is implemented in parallel on GPU. Investigation and

parameter optimization of the algorithm are realized.

Tracking process has accelerated by 10 times and the

training process has accelerated by 2 times versus to the

sequential algorithm version. The maximum resolution of

the frame, suitable for real-time tracking, and the optimum

frequency of capture frames from a movie in the train ing

set are calculated.

The obtained algorithm acceleration is not the possible

maximum, so further development in this area can g ive

better results, both in performance on the p revious frame

resolution and the ability to handle a greater volume of

informat ion. It may be possible to develop algorithms

training the neural network in real time, i.e. in a process of

the object tracking.

References

[1] Ahmed, J., Jafri, M. N., Ahmad, J., and Khan, M. I., “Design and

Implementation of a Neural Network for Real-Time Object
Tracking,” Engineering and Technology, 6. 209-212. 2005.

[2] Haykin, S. Neural Networks. A Comprehensive Foundation ,

Prentice Hall Inc., 1999.

[3] David, B. Kirk, and Wen-mei, W. Hwu, Programming Massively

Parallel Processors. A Hands-on Approach, NVIDIA Corporation,
2010.

[4] Mobileye Advanced Driver Assistant System . URL:

 http://www.mobileye.com

[5] Automatic vehicle driving. URL:

 http://www.argo.ce.unipr.it/ARGO/english/

[6] Maya – 3D Animation – Autodesk. URL:

 http://usa.autodesk.com/maya/

[7] Bradski, G., Kaehler, A., Learning OpenCV, O’Reilly Media, Inc.,

USA, 2008.

