
Journal of Computer Sciences and Applications, 2013, Vol. 1, No. 1, 5-13

Available online at http://pubs.sciepub.com/jcsa/1/1/2

© Science and Education Publishing
DOI:10.12691/jcsa-1-1-2

Developing Pervasive and Adaptive Applications with

MAADE

Enrico Franchi, Agostino Poggi, Michele Tomaiuolo
*

Department of Information Engineering, University of Parma, Italy

*Corresponding author: michele.tomaiuolo@unipr.it

Received December 21, 2012; Revised January 21, 2013; Accepted February 28, 2013

Abstract Pervasive computing is one of the most active research fields because it promises the creation of

environments where computing and communication devices are effectively integrated with users so th at applications

can provide largely invisible support for tasks performed by users. This paper presents an environment for software

development, called MAADE (Multi Adaptive Agent Development Environment), and aimed at the implementation

of mult i-agent systems for pervasive and adaptive applications using both: (i) agents and multi-agent systems

properties and (ii) composition filters for driving and dynamically adapting the behaviour of the system. MAADE

allows the realization of both intentional and reactive agents, which live in an environment constituted by passive

objects exposing their features in the form of available services. Thanks to its modular nature, the framework is

proving particularly effective for allowing graduate students to experiment with different models and protocols used

in Distributed Systems. Moreover, it is being used for the realization of prototypal applications, including an

ubiquitous social networking platform, with dynamical location and proximity groups.

Keywords: multi-agent systems, composition filters, adaptive systems, pervasive systems, online social networking

1. Introduction

The necessity to manage and design heterogeneous

systems is becoming increasingly evident in modern

software development. The importance of smoothly

evolving software is generally acknowledged, together

with the need to support legacy software and different

software modules in general, possibly developed

separately and according to different paradigms. This

tendency towards heterogeneous systems is made even

more actual by the importance of pervasive computing and

situated software systems.

Pervasive computing, in part icular, is one of the most

active research fields, because it promises the creation of

environments where computing and communication

devices are harmoniously integrated with users, so that

applications can provide largely invisible support for tasks

performed by users ‎[50,51].

Several works discussed the features that make a

software infrastructure suitable for the development of

such environments; see, for example, ‎[26,28,34,47,57].

The list of such features is very long and includes:

adaptation, context awareness, distribution,

interoperability, invisibility, mobility and scalability.

These features are not mutually independent and, in

particular, adaptation can be considered a mandatory

requirement for the development of pervasive applicat ions

that exhib it the previous features. In fact, adaptation

allows to overcome the intrinsically dynamic nature of

pervasive environments where users, devices and software

components can dynamically enter, leave or move and

where users can at any time require support for new

tasks ‎[3,13,21,27,46,53,54,55].

To cope with these issues various software architectures

and models can be used. Proactive agents, goal-oriented

behaviours and planning in general allow fulfilling user

needs even in unforeseen conditions. On the other hand,

not all software components necessarily benefit from

cognitive capabilit ies, neither from being modelled this

way. In real-world systems, some software agents may

only need to react to environmental stimuli, and still

provide the useful feature of spatial and/or social

situatedness. Finally, the agent environment itself is made

of passive objects, which expose their features in the form

of availab le services. These services often rely on

simplistic request-response synchronous protocols, but in

general may vary from SOAP to RESTfu l interfaces, and

may compose themselves in more complex services, on

the basis of orchestration or choreography protocols.

This paper presents an environment for software

development, called MAADE (Multi Adaptive Agent

Development Environment), aimed at the implementation

of mult i-agent systems for pervasive and adaptive

applications using both: (i) agents and multi-agent systems

properties and (ii) composition filters for driv ing and

dynamically adapting the behaviour of the system.

In the next sections, we briefly review agent theories

and models that are relevant for MAADE; then, we

introduce MAADE itself and we also d iscuss its features

in the context of pervasive computing; afterwards, we

introduce UBA, a ubiquitous social networking platform

we designed over MAADE; eventually, we sketch some

implementation notes and discuss about the

experimentation and the future research lines.

 Journal of Computer Sciences and Applications 6

2. Agent Theories and Models

The definition of “software agent” covers a wide

variety of computer programs, ranging from so-called

“heavyweight agents”, with higher internal complexity

and cognitive capabilities, to so-called “lightweight

agents”, with simple or no internal state and exposing

mainly react ive behaviour. Between the two extremes

there is a continuous spectrum of different types of

software agents, with some features taken by both main

types and: (i) deriving from different agent theories, for

the description of the mental states of agents; (ii)

implementing different agent architectures, which guide

the development of real systems from abstract theories,

and (iii) featuring different programming constructs or

specialized languages.

Heavyweights, intentional agents. According to

various cognitive theories, software agents can be usefully

described in terms of the intentional stance, i.e., on the

basis of their mental attitudes, such as knowledge, beliefs,

wants etc. The mental attitudes could be about facts in

general, but in some cases they could also regard other

agent attitudes, thus allowing for higher order reasoning.

There is not a single theory for describing the cognitive

model of software agents. Traditional AI studies led to

various mental models that have been refined and applied

to software agents. One of the most widely accepted

theories describes agents in terms of their Beliefs, Desires

and Intentions (for so-called BDI agents) ‎[48]. Mainly

during the 1980s, there has been a shift of researchers'

attention from monolithic intelligent systems to

Distributed Artificial Intelligence. Wooldridge ‎[59], in

particular, developed some log ic theories for describing

Multi-Agent Systems. In those systems, communication

plays a fundamental ro le. The speech act theory, deriving

from prev ious studies presented in ‎[2,14,15,52], has often

been applied to Mult i-Agent Systems, because it allows to

associate message performat ives and message contents

with the mental state of agents. According to this theory,

agent communicat ions are essentially pragmatic actions,

performed with the intention of procuring some change in

their world. Among the various types of speech acts,

probably the most easily distinguished are directives, e.g.,

for request messages, and representatives, e.g., for inform

messages. Various frameworks for BDI agents have been

realized, including Jason ‎[7], JACK ‎[58] and Jadex ‎[45].

Lightweight, swarming agents. Lightweight agents

are developed essentially in contrast with traditional AI

and cognitive theories in general. The principal question

was the applicability of cognit ive theories to concrete

problems, with highly uncertain and changing perceptions

about the world, and multifaceted data, which easily

become unmanageable through a cognitive approach, as

reasoning typically requires an exponential complexity

against the size of the problem. The theory behind the

lightweight approach to develop multi-agent systems

derives from various research works and in particu lar from

the famous and provocative “subsumption architecture”

proposed by Brooks ‎[8]. In lightweight mult i-agent

systems, in fact, intelligence is not supposed to exist in the

symbolic reasoning of agents, but it emerges as the result

of the continuous perceptions and reactions of mult iple

simple agents, possibly coordinating their actions without

explicit and direct exchange of knowledge. Swarming

agents are often used for modelling and simulation ‎[9,23].

Available implementations include Ascape ‎[37],

NetLogo ‎[33], MASON ‎[30], Repast ‎[35] and Swarm ‎[31].

Intermediate agents. Between those two contrasting

theories, various practical systems are modelled using

software agents that are neither fu lly intentional entities

with cognitive capabilities, neither purely reactive entit ies,

without any internal state. Among these systems, many

are designed in terms of a Finite State Machine. The

internal status of agents determines the kind of behaviours

it exposes ‎[11]. The single behaviors can range in

complexity from symbolic representation and reasoning

systems to much simpler stimulus-response rules. Among

these systems, MANA ‎[29] and EINSTein ‎[22], behave on

the basis of matrix multiplications, with a vector of

weights representing the dynamical “personality”, i.e. the

effect of environmental stimuli on agents. Task Frame ‎[10]

is based on a simpler model, with an internal FSM and

transitions triggered by particular events. On the other

hand, more complex systems ‎[38,39]are based on

uncertain knowledge. Those propositions are represented

as the nodes of a Bayesian network and processing

consists in propagating evidence across the network; thus,

they combine symbolic and numeric p rocessing. Also in

Agentcities, a large international research pro ject

advancing agent technologies, many deployed agents

exploited the semantics of FIPA ACL for high-level

service composition, yet they based their internal

operation on the intrinsic FSM model of JADE

behaviours ‎[44]. Being other parts of the project

developed according to a BDI model, the overall system

was quite variegated, with respect to both agent

technologies and models, but with all parts adhering to

FIPA specifications for interoperability.

3. MAADE

MAADE is a software framework created to simplify

the realization of distributed, pervasive and adaptive

applications, merg ing the client-server and the

autonomous agent paradigms. MAADE offers both a set

of abstract and concrete agents.

This software framework allows the realizat ion of

systems based on two types of processes: (i) agents, either

cognitive or not, and (ii) servers. An agent is an act ive

process that can possibly have a p roactive behaviour and

so can start the execution of some tasks without the

request of other processes. Servers are the passive entities

realizing the interfaces exposed by the environment

objects. They are only able to perform tasks on request of

agents. Yet, they may compose, if necessary, the services

offered by other servers through synchronous messages.

Agents may have their own thread of execution, or rely on

a thread-pool. In fact, they are generated by an extensible

abstract-factory mechanis m and managed by the runtime

system through a terse interface. They perform tasks

interacting, if necessary, with other agents and servers

through synchronous and asynchronous messages.

Moreover, while both servers and agents may directly take

advantage of the services provided by other kinds of

applications, servers are the best suited components for

providing services to external applicat ions, exposing one

or more public interfaces.

7 Journal of Computer Sciences and Applications

Figure 1. Simplified representation of the agent model

Servers also act as internal interfaces to application

objects and in general they represent the environment

sensed and acted upon by agents, either reactive or

intentional. Apart from interacting with the platform

environment, through available services, agents can

communicate using various agent languages, as we will

explain in the fo llowing sections.

Agents and servers can be distributed on a

(heterogeneous) network of computational nodes (from

now called runtime nodes) for the realizat ion of d ifferent

kinds of applicat ion. In particu lar, agents and servers are

grouped into some runtime nodes that realize a platform.

An application can be obtained by combining some pre-

existent applications by realizing a federation.

3.1 Agent Model

An agent is an active (i.e., it has its own thread of

execution) computational unit that takes advantages of six

main elements: behaviour, description, description

selector, mailer, message content and message filter.

An agent is able to perform one or more tasks, encoded

in a behaviour taking, if necessary, advantage of the tasks

provided by other agents. To facilitate the cooperation

among agents, agents can advertise themselves making

their description available to the other agents. The agent

identifier and the agent type represent the default

informat ion contained in a description; however, agents

may introduce some additional information in their

description.

An agent can interact with the other agents through the

exchange of messages based on one of the fo llowing three

types of communicat ion:

 synchronous communication, the agent sends a

message to another agent and waits for its answer;

 asynchronous communication, the agent sends a

message to another agent, performs some actions and then

waits for its answer;

 one-way communication, the agent sends a message

to another agent, but it does not wait for an answer.

An agent has also the ability of discovering other agents

of the application. In fact, it can both get the identifiers of

the other mailers of the systems and check if an identifier

is bound to another mailer of the system, taking advantage

of the registry service provided by MAADE runtime

lib raries.

Moreover, an agent can take advantage of some special

objects, called description selectors, for requiring the

listing of specific subsets of mailer identifiers. In fact, a

description selector allows the definition of some

constraints on the informat ion maintained by the agent

descriptions (e.g., the agent must be of a specific type, the

agent identifier must have a specific prefix and the agent

must be located in a specific runtime node) and the

registry service is able to apply their constraints on the

informat ion of the registered descriptions for building the

required subsets of identifiers.

An agent does not exchange directly messages with the

other agents, but delegates this duty to a mailer. In fact, a

mailer provides a complete management of the messages

of an agent: it receives messages from the mailers of the

other agents, maintains them up to the agent requests

theirs processing and, finally, sends messages to the

mailers of the other agents.

A message contains the typical informat ion used for

exchanging data on the net, i.e., some fields representing

the header information, and an object, called content, that

contains the data to be exchanged.

Normally, a mailer can communicate with all the other

mailers and the sending task does not involve any

operation that is not related to deliver messages to the

destination; however, the presence of message filters can

modify the normal delivery of messages.

A message filter is a composition filter ‎[4] whose

primary scope is to define the constraints on the

reception/sending of messages; however, it can also be

used for manipulating messages (e.g., their encryption and

decryption) and for the implementation of replication and

logging services.

Each mailer has two lists of message filters: the ones of

the first list, called input message filters, are applied to the

input messages and the others, called output message

filters, are applied to the output messages (Figure 1 shows

the flow of the messages from the input message filters to

the output message filters). When a new message arrives

or must be sent, the message filters of the appropriate list

are applied to it in sequence until a message filter fails;

therefore, such a message is stored in the input queue or is

sent only if all the message filters have success.

Figure 2. Example of use of message filters for getting specific input

messages

Figure 3. Distributor architecture

Message filters are not only used for customizing the

reception and the sending of messages, but are also used

 Journal of Computer Sciences and Applications 8

by the agents for asking their mailer for the input

messages they need for complet ing their current task. In

fact, as described above, a message filter allows to define

the constraints that are necessary to identify a specific

message and a mailer is able to use it for selecting the first

message in the input queue that satisfies its constraints

(e.g., the reply to a message sent by the process, a

message sent by a specific agent and a message with a

specific kind of content). For example, Figure 2 shows the

code that an agent use for getting either a message whose

content is a temperature value or a message whose sender

is the controller of the application.

3.2 Agent Communication

In the previous subsection, we discussed how agents

interact through messages and support three kinds of

communicat ion (synchronous, asynchronous and one-

way); messages are composed of a header (containing the

typical informat ion used for exchanging data on the net),

and a content object. Therefore, a message can be

considered as the envelope of a traditional agent

communicat ion language (ACL) and its content can

represent a performat ive.

In particular, MAADE does not impose a specific ACL,

but allows the use of one of the ACLs provides by the

environment. The current release provides: (i) an

implementation of the FIPA ACL ‎[18], (ii) a simple

language, called MACL, which supports the typical

request-response interaction, (iii) the possibility to

implement another well-known ACL (e.g., KQML) ‎[17]

and (iv) the possibility to define new ACLs.

This solution allows the implementation of both

“standard” multi-agent systems based, for example, on

FIPA ACL, which allows the interoperability with other

multi-agent systems, and “specialized” mult i-agent

systems where a “custom” ACL can, for example, reduce

the development cost and/or improve the performances.

3.3 Runtime Services

The runtime lib raries implement the basic services

necessary for the agents of a MAADE application. These

services are provided by the following four components:

registry, factory, filterer and distributor.

A registry maintains the informat ion for localizing the

agents of a computational node (hereafter simply called

node) of an application and allows the d iscovery of all the

agents of an application. In fact, a registry supports: (i) the

binding of agent identifiers of the local node with some

special objects, called agent references, (ii) the listing of

the identifiers of both the local and remote nodes and (iii)

the retrieval of agent references, on the basis of the agent

identifiers.

A reference is a proxy of the mailer of an agent that

makes the communicat ion transparent with respect to the

location of the agent. Therefore, when an agent wants to

send a message to another agent, it must obtain the

reference to the other agent and then use it for sending the

message.

A factory has the duty of creat ing new agents in the

local node. Of course, an important side effect of the

creation of an agent is the creation of the related mailer

and agent reference. The creation is performed on the

basis of the qualified name of the class implementing the

agent and a list of init ialization parameters.

Figure 4. Exchange of messages in a distributed system

As introduced above, an agent mailer has two lists of

message filters. The agents cannot directly modify such

lists of message filters, but they can use a component

called filterer for that purpose. A filterer allows the

creation and modification of the lists of message filters

associated with the agents of the local runtime node.

Therefore, an agent can use such a service for managing

the lists of its message filters, but also for modify ing the

lists of message filters associated with the other agents of

the local node.

A distributor allows the communication of a node with

the other nodes of an application possibly through

different types of communication supports, guaranteeing a

transparent communication between the agents of different

nodes. A distributor has the duty of managing the

connections with the distributors of the other nodes of the

application. This distributor manages connections that can

be implemented with different kinds of communication

technology through the use of different connectors (see

Figure 3). Moreover, a pair of nodes can be connected

through different connections. A connector is a connection

handler that manages the connections of a node with a

specific communicat ion technology allowing the exchange

of messages between the agents of the accessible nodes

that support such a communication technology.

A connection is a unidirectional communication

channel that provides the communicat ion between the

agents of two nodes through the use of remote references

(Figure 4 shows an interaction between two agents

running on different nodes). In particular, a connection

provides a remote lookup service that allows to the local

registry both the listing of the remote agents and the

access to their remote references.

3.4 Implementation

The MAADE software environment has been

developed using the Java programming language. The

software can be divided in an application module and a

runtime module. The application module provides a set of

interfaces, abstract and concrete classes that can be used

for the development of systems. In part icular, it contains:

(i) a set of concrete agent and behaviour classes usable for

performing the most typical tasks of the informat ion

management domain, (ii) a set of description selector

classes usable for the most frequent discovery tasks, (iii) a

set of message filter classes usable both for configuring

security and logging services and for delegation and

distribution of tasks, (iv) the content message classes used

in the basic interactions among agents and an

9 Journal of Computer Sciences and Applications

implementation of the FIPA ACL, and (v) the artefacts

(i.e ., Java classes and/or configuration files) for the

deployment of the nodes of a system and fo r the startup of

the initial sets of agents and message filters. The runtime

module contains an implementation of the software

components that provide the runtime service described

above. In particular, the distribution service has been

implemented through Java RMI ‎[41], JMS ‎[32] and

MINA ‎[1] communication technologies.

4. Pervasive Adaptation

Providing adaptation in a pervasive environment is a

challenging task as the adaptation concern affects mult iple

elements (devices, services, etc.) in the environment. The

problem is further complicated by the fact that the

elements are geographically distributed and in many

instances there is no central node controlling the operation

of the pervasive environment ‎[20,48] .

MAADE integrates multi-agent systems and aspect-

oriented techniques for the development of adaptive and

pervasive applications. In fact, mult i-agent systems are

based on autonomous software entities that can interact

with their environment, and therefore they adapt well to

the dynamic nature of pervasive applications ‎[12,16,19,38,

42,52,56]. Aspect-oriented techniques ‎[14,25,49] are

considered a suitable means for the development of

complex applications that are composed of different

interleaved cross-cutting concerns (properties or areas of

interest such as energy consumption, fault tolerance, and

security) and then they are indicated for providing

adaptation in pervasive environments given that

adaptation largely affects the other features (concerns) of

such environments ‎[20,48] .

In princip le, the use of agent-oriented techniques may

be sufficient for realizing effect ive adaptive and pervasive

applications by dynamically creating new agents and by

modifying the behaviour of some pre-existing agents.

However, in practice, in a large set of cases an application

can be adapted to the evolution of the environment

without the cost of changing the behaviour of agents or of

creating new agents by simply working on the delivery of

messages (e.g., a particu lar type of message needs to be

managed by another agent or the messages exchange

between two agents must be encrypted). In these cases, it

is necessary to have one or more control agents that drive

the adaptation of an applicat ion by modifying the sets of

input and output message filters associated with the agents

involved in the tasks of the application.

Message filters allow the adaptation of the behaviour of

an application with a limited computational overhead. In

fact, each message filter usually implements a very simple

task (e.g., it forwards or transforms a message) and their

management is very simple (i.e., a message filter can

either propagate a message to the next filter of the list or

stop the propagation of the message). In particular, besides

being used for implementing the typical services of an

aspect oriented support, i.e., security, persistence and

logging, message filters can be used for adapting the

application to any hardware and software modification

and for personalizing the application to the users that are

using it (e.g., an input and the corresponding output

message filter can adapt the interface either between two

agents or between an agent and the external world, a set of

messages filters, distributed on a net of agents, can route a

request towards the most appropriate agent, or user, that

can serve the request or can combine the tasks of d ifferent

agents to provide new kinds of service).

However, although message filters can be considered

the suitable “bricks” for adapting an applicat ion, they need

some additional software, i.e., the agents to support

evolving filter configuration. Therefore, message filters

are only used to guarantee the appropriate behaviour of a

pervasive application in a specific state of the environment

and delegate the dynamic adaptation of the application to

a set of agents. The use of agents for the dynamic

adaptation of an application may introduce important

overhead on the performance of the applicat ion when the

reconfiguration of the message filters requires complex

reasoning and negotiation tasks. However, this should be

an exception and not the norm because the state of a

pervasive environment evolves through a sequence of

changes that rarely cause important modifications in the

environment and thus the reconfiguration overhead is

usually limited.

5. UBA

Online social networks have forever changed the way

human being interact and socialize. Agent-based

technologies are well-suited for online social networks ‎[4] ,

especially considering: (i) the networks massive scale and

(ii) the interoperability requirements that are becoming

increasingly relevant, especially in the context of

pervasive computing. We decided to use the MAADE

framework to implement a pervasive layer built on top of

an OpenSocial Container. The system, called for

simplicity UBA, was created to provide a real-world

scenario to evaluate MAADE for developing pervasive

adaptive applications. Moreover, UBA has an additional

P2P layer that can be used for the devices to share

resources without relying on the OpenSocial Container

and it uses Attribute-Based Encryption ‎[6] in order to

make resources (especially on the P2P layer) and

communicat ions accessible only to those having the

appropriate permissions.

OpenSocial ‎[36] is a public specification that defines a

component hosting environment (container) and a set of

common application programming interfaces (APIs) for

web-based applications and was originally developed to

support interoperability among social networking

platforms: essentially, the container holds the user's data

(profile, relations and activities) that can be queried and

modified by client applicat ions. Our applicat ion does not

assume any specific OpenSocial Container, however, for

the deploy we used the popular Shind ig implementation.

From an architectural point of view, UBA is a heavily

distributed agent-based application. Each user in the

system, identified with a user-id is the owner of a UBA

domain, that is constituted by several UBA nodes and,

eventually, each node is formed by mult iple MAADE

agents. UBA nodes run on specific hardware devices (e.g.,

a mobile phone, a tablet or a desktop computer) and every

time such devices are connected to the network the

corresponding UBA node is included in the user’s UBA

domain. Each UBA node has a specific device-id.

 Journal of Computer Sciences and Applications 10

However, the link between the user-id and the device-id is

not public and can be disclosed only upon user’s approval.

Users in the social network can be linked with mult iple

kinds of relat ionships. These relationships are expressed

as belonging to a group. So, for example, @friends is a

group that denotes the friendship relationship. These

groups essentially work like Google Plus circles and are:

(i) unique to a user, i.e., two groups with the same name

created by two different users are two entirely d ifferent

entities, and (ii) associated with other users or activities,

e.g., creat ing posts or images. When a user adds other

users to a given group, those users can access the

resources associated with the group. If they are removed

from the group, they are no longer allowed to access the

associated resources.

In UBA we also have two additional kinds of groups: (i)

Proximity groups and (ii) Location groups. Proximity

groups are centred on each member of the social

networking system and represents physical closeness to

such member. Proximity g roups are extremely fluid, in the

sense that users can physically move and consequently the

set of users belonging to a Proximity group varies in t ime.

Each user configures the sticky-ness of his Proximity

group, i.e., how long the other users are considered part of

it after they are no longer physically close to him.

Although a Proximity g roup may be entirely public, for

privacy reasons it is safer to consider only Proximity

groups that are subset of other groups (or to the set union

of all groups, i.e., only “friends” are part of a Proximity

group).

On the other hand, a Location group (i) is associated

with the users in the proximity of a given location (e.g., a

classroom or a museum room), (ii) has a host, i.e., a node

that both identifies and supports the group and (iii) is

associated with a location profile, which can be either

hosted on the central server or on the device itself. In fact,

a location, although logically d ifferent from a regular user,

works in the same way and a Location group is essentially

a Proximity group for the location.

As for the functionality, Proximity and Location groups

mostly are similar to regular groups. However, there are

some additional possibilit ies. When a user wants to add a

resource to his Proximity group he can decide: (i) how to

host it, (ii) the criteria which relate that resource to the

Proximity group and (iii) for how long to host it.

Regarding the resource hosting, the user can simply send

the resource to the centralised server and host it like any

other resource in a social network (e.g., a post, a picture).

However, he can also decide: (i) to host the resource

himself and (ii) to publish it P2P, signed for authenticity.

Since the members of a Proximity group vary in time, the

user must decide if the resource is be accessible (i) to the

users which were part of the Proximity group at the

moment the resource was published, i.e., the OpenSocial

Agent creates a unique “anonymous” group with the users

and associates the resource to that group, or (ii) at the

moment when they access it. It is worth noticing that

resources published with P2P are typically publicly

accessible forever (until the resource is available) and

removing them from the network is typically not feasible.

However, the resource is typically encrypted.

Location groups work similarly, however, the host is

typically responsible to host the resources (unless it wants

to use the centralised server). P2P is still an option,

especially fo r large media files. The main difference is the

policies regarding group memberships. The set of all the

Locations in the system is partially ordered (i.e ., a

Location can be declared to be contained by another

location, but not every two locations can or should be

related). The responsible organisation can provide its

nodes with a semantic description of the location where

the nodes are situated and their ro le and the nodes

negotiate their order.

Location hosts determine both the time a user should be

still considered a member of the group after he physically

left the location and whether the user entering another

location group that is not included should automatica lly

remove the user from the present Location group. Privacy

concerned users may entirely disable Location group

membership and are consequently never reported to be in

a given location. They can also decide never to

communicate their location to specific group hosts or to

whitelist the only group hosts they trust to know their

position.

Several software agents provide the functionality

required for an UBA node. The most important ones are:

 the Liaison Agent, responsible to make the various

UBA nodes interoperate correctly

 the User Interface Agent (UI Agent), that sends

notifications to the interface and takes input from the user

 the Neighbourhood Manager Agent (NM Agent), that

provides a view of the reachable non-domain UBA nodes

 the OpenSocial Agent (OS Agent), that communicates

with the OpenSocial Container

 the Trust Negotiator agent (TN Agent), that is

responsible of trust-negotiations among different UBA

domains

 the Resource Manager Agent, that manages resources

in the P2P layer

An instance of each of these agents exists in every UBA

node and it cooperates with its siblings in the other nodes.

For example, if a given UBA node is not connected to the

Internet but can sense using Bluetooth another UBA node

in the same domain (i.e ., belonging to the same user), the

Liaison Agent of the offline node sets a composition filter

that transparently forwards all the messages for its own

OS Agent to that of the online node. The Liaison Agent

also interacts with the MAADE reg istry so that the nodes

in the same domain can communicate properly and in

general is responsible to make all the different UBA nodes

part of the same domain work together harmoniously.

However, the details of cooperation are mostly left out

from the single agents. Most situations are s imply dealt

with setting the appropriate composition filters so that (i)

all the relevant nodes have all the information they need to

make the proper choices and (ii) messages sent to agents

that are clearly not able to perform the task (for example,

because they need to be online but the node is offline) are

suppressed.

It is worth noting that UBA domain is constituted by

multip le UBA nodes, but the user is probably watching

only a subset of devices running UBA nodes. Thus, it is

necessary to determine the active node, i.e., the node to

which the user is actually connected. The Liaison Agents

elect the Active Node (i) taking into account which is the

device that registered an explicit user action or (ii) having

the UI Agents ask the user to select the device he is

currently using. The position of the user is determined

11 Journal of Computer Sciences and Applications

considering the position of the Active Node. However, the

user can configure the system so that notificat ions are sent

not only to the Active Node UI Agent, but also to other UI

Agents. The forwarding of the notifications is entirely

managed using composition filters, so that all the agents in

a node only send messages to the same node UI Agent and

the messages are subsequently modified to reflect their

actual provenience and then delivered where appropriate.

Moreover, when the user performs some activity on the

social network, such as writing a post or tagging a picture,

a message is sent to the OS Agent in order to update the

OpenSocial Container. Composition filters set by the

Liaison Agents forward the message to the other nodes so

that their view of the user profile is directly updated

without needing to access the container.

 A typical mobile device has several ways to scan its

surroundings: Bluetooth, WiFi Direct, regular WiFi, Near

Field Communication (NFC) and a UBA node has specific

agents to discover other UBA nodes using these protocols.

Then the NM Agent aggregates information from these

agents, trying to present a consistent view, merg ing the

data from the different sources and it configures the

discovering agents according to high level criteria, such as

battery consumption and hardware availability. Moreover,

the NM Agent also determines its physical position

(possibly using GPS, if available) and notifies the

OpenSocial Agent (in order to update the profile, if the

user so desires). However, the Liaison Agents activate

composition filters that discard update position messages

that do not come from the Active Device. Moreover, a

NM Agent that senses other NM Agents belonging to the

same domain informs the Liaison Agent that, eventually,

sets composition filters so that all the messages coming

from its sensor agents are forwarded to that device as well.

So, for example, if a user is sitting in front of his

desktop computer, writing a post, the computer runs the

Active Node. However, h is mobile phone is equipped with

more hardware sensing the surrounding and both the

computer and the mobile device are connected to the same

WiFi network. The NM Agents are mutually aware of

their respective existence and, as a consequence, the UBA

node on the computer is receiving data on the

neighbourhood from the mobile phone, that is presented

consistently to the user. Moreover, the UBA Node on the

computer is aware of the geographical position because of

the UBA node on the mobile phone (that has a GPS sensor)

and can properly update the profile on the OpenSocial

Container. The whole p rocess is essentially transparent

because the agents are mostly oblivious of the forwarding

process.

Another important function of the NM Agent is to

update the composition of the Proximity group with the

UBA nodes it senses. However, when the agents

responsible to assess the neighbourhood (e.g., using Wi-Fi

Direct) d iscover a new node, they are only given its device

identifier. Th is identifier alone cannot be used to

understand the user identifier, i.e., the d iscovering node

knows that another node is in its neighbourhood, but not

to whom it belongs (unless it already knows that particular

device). In order to resolve the device identifier to the

actual user, the NM Agent asks the OS Agent to resolve

the device-id using the OpenSocial Container. If the users

are “friends” (or otherwise connected) the container can

disclose the required user-id. Moreover, the sensed node is

sent a message encrypted with the users’ private key that

contains both a secret and the sensing node user-id. If the

node actually belongs to a friend, then it can decrypt the

message and send back a message encrypted with it with

its private key containing the secret and its user-id.

Whichever of the two processes is successfully completed,

the two NM agents have the respective user-ids and can

update their Proximity groups. Otherwise, a trust

negotiation starts.

The TN Agent of the discovering node can: (i) start a

trust negotiation with the discovered agent, disclosing

some information (e.g., the informat ion that both of them

are members of the same class) or (ii) ask some other node

he is already acquainted with (o r potentially a Location

host) to be a broker. In the latter case, both nodes can ask

to a third agent to back their claims. If the negotiation

succeeds, the only immediate results are that the

discovering node: (i) knows the actual user-id of the

discovered node; (ii) is in its Proximity group, which

means that it is able to access only resources part of the

Proximity group. However, typically during the

negotiations each of the two TN Agents obtains some

informat ion on the other user and consequently decides to

which addit ional groups to add him. This p rocess can be

automatic or semi-automat ic (awaiting human

confirmat ion) depending on the preferences.

UBA agents present different degrees of autonomy and

intelligence. For example, agents such as the Wi-Fi Direct

Agent are mostly reactive agents that only inform the NM

Agent when a new UBA node is discovered. They are

implemented as MAADE agents mainly because MAADE

servers are not able to poll the device hardware without

external stimuli. Similarly the UI Agent is implemented

with a MAADE agent because it is important to send

asynchronous messages in certain situations. Moreover,

we named “agent” the Resource Manager Agent or the OS

Agent only for uniformity, since they are implemented

with MAADE servers and they have almost no agency.

Moreover, we wanted to make clearer the distinction

between the external server that is the OpenSocial

Container and the OS Agent, which acts as a client for that

server and a server for the other UBA agents.

On the other hand, the Liaison Agent, the NM Agent

and the TM Agent require all the features provided by

MAADE Agents. The Liaison Agents perform the

elections and auctions necessary to determine the global

behaviour of the UBA domain. The NM Agent processes

semantically meaningful data coming from the sensor

agents and tries to present a consistent view. Moreover, it

configures the sensors in order to maintain energy

consumption within parameters. Eventually, the TN Agent

performs complex negotiations with the goal to discover

the identity of the other nodes in the surroundings,

disclosing the least possible amount of informat ion on

their user.

6. Conclusions

This paper presented a software framework, called

MAADE, which has the goal of simplify ing the

development of pervasive applications by combin ing

multi-agent and aspect-oriented techniques. In fact, this

solution allows to couple the power of mult i-agent based

 Journal of Computer Sciences and Applications 12

solutions with the simplicity of compositional filters

solutions guaranteeing both a good adaptation to the

evolution of the environment and a limited overhead to the

performances of the applications.

MAADE is proving to be an effective framework for

the development of various kinds of applications,

including (i) simulations and (ii) pervasive systems. In the

last year, we used it in the lab act ivities of the “Distributed

Systems” course of the computer engineering master

degree. In particular, the students of the course used it

both for implementing some coordination algorithms

taught during the course and for developing an individual

project as part of their course evaluation. Therefore, at the

end of their work, MAADE was used for the development

of about thirty different systems (e.g., some agent-bases

simulators, some e-commerce systems, some informat ion

sharing systems, etc.). The b ig result of such

experimentation is that all the students with a good

knowledge of the Java language were able to

autonomously develop a complete system after few hours

of train ing (8 hours) on the use of MAADE. Moreover, we

compared the works of students with similar abilit ies in

the building of Java pervasive systems by using (or not)

MAADE. The result in this case was that student usually

spent more time when they do not use MAADE and the

measure of the gap is the 20% of the development time.

Of course, during their project we have discussions with

them about the possible software engineering solutions,

about the goal of their project, but very little time was

spent for discussing about MAADE.

Future research activities will be dedicated, besides to

continue the experimentation, improvement and validation

of the MAADE software framework, to the development

of the collaborative services for the social networking

platform. In particular, current activit ies are dedicated to:

(i) the implementation of more sophisticated adaptation

services based on message filters taking advantages of the

solutions presented by PCOM ‎[3] and by PICO ‎[27], (ii)

the automatic creation of the Java classes representing the

content of messages from OW L ontologies taking

advantage of the O3L software library ‎[43], and (iii) the

extension of the software environment with a

communicat ion technologies to provide both high-

performance communication and an easy integration with

the Web, i.e., jWebSocket ‎[24].

References

[1] Apache Foundation. MINA software Web site. Available:
http://mina.apache.org/ [Accessed 2012-12-15].

[2] Austin, J.L. “How to do Things with Words: The William James

Lectures delivered at Harvard University in 1955”. Ed. J. O.
Urmson, Oxford, Clarendon. 1962.

[3] Becker, C., Hante, M., Schiele, G., Rotheemel, K. “PCOM - A

component system for pervasive computing”. Proceedings of the
2nd IEEE Conference on Pervasive Computing and
Communications, PerCom 2004 (pp. 67-76). Orlando, FL.

[4] Bergenti, F., Franchi, E., Poggi, A. “ Agent-based Social Networks
for Enterprise Collaboration”. In Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), 2011

20th IEEE International Workshops on (pp. 25-28). IEEE.

[5] Bergmans, L., Aksit, M. “Composing crosscutting concerns using
composition filters”. Communications of ACM, 44(10): 51-57,

2001.

[6] Bethencourt, J., Sahai, A., Waters, B. “Ciphertext-policy attribute-
based encryption”. IEEE Symposium on Security and Privacy.

(2007), 321-334.

[7] Bordini, R.H., Hübner, J.F., Wooldridge, M. “Programming
Multi-Agent Systems in AgentSpeak using Jason”. Wiley (2007),

292 pages.

[8] Brooks, R. “A robust layered control system for a mobile robot”.
Technical Report AI Memo 864, Artificial Intelligence Laboratory,

Massachusetts Institute of Technology. 1985.

[9] Cabri, G., Ferrari, L., Zambonelli, F. “Role-Based Approaches for
Engineering Interactions in Large-Scale Multi-agent Systems”.

Software Engineering for Multi-Agent Systems II, Lecture Notes in
Computer Science 2940: 243-263, 2004.

[10] Camps-Mura, D., Pérez-Costaa, X., Sallent-Ribesb, S. “Designing

energy efficient access points with Wi-Fi Direct”. Computer
Networks, 55(13), 2838-2855, 2011.

[11] Ceranowicz, A., Nielsen, P.E., Koss, F. “Behavioral

Representation in JSAF”. Proceedings of Ninth Annual Computer
Generated Forces and Behavior Representation Conference
(2000). Orlando, FL.

[12] Chakraborty, D., Takahashi, H., Suganuma, T., Takeda, A.,
Kitagata, G., Hashimoto, K., Shiratori, N. “An adaptive context
aware communication system for ubiquitous environment based

on overlay network”. Recent Advances In Computer Engineering.
Proceedings of the 12th WSEAS International Conference on
Computers (2008), 832-837. WSEAS, Stevens Point, Wisconsin.

[13] Cheng, S., Garlan, D., Schmeri, B.R., Sousa, J.P., Spitznagel, B.,

Steenkiste, P., Hu, N. “Software Architecture-Based Adaptation
for Pervasive Systems”. Trends in Network and Pervasive
Computing, Lecture Notes In Computer Science, 2299: 67-82,

2002.

[14] Cohen, P.R., Levesque, H.J. “Rational interaction as the basis for

communication”. Intentions in Communication (1990), pp. 221-
256. Cohen, Morgan, Pollack, eds., The MIT Press.

[15] Cohen, P.R., Perrault, C.R “Elements of a plan based theory of

speech acts”, Cognitive Science 3. 1979.

[16] Filman, R., Elrad, T., Clarke, S., Aksit, M. “Aspect-Oriented
Software Development”. (2004). Addison-Wesley.

[17] Finin, T., Fritzson, R., McKay, D., McEntire, R. “KQML as an
agent communication language”. Proceedings of the 3rd
International Conference on information and Knowledge

Management (1994), 456-463. Gaithersburg, MD.

[18] FIPA Consortium. FIPA Specifications. Available:
http://www.fipa.org/ [Accessed 2012-12-15].

[19] Fok, C., Roman, G., Lu, C. “Agilla: A mobile agent middleware
for self-adaptive wireless sensor networks”. ACM Transactions on
Autonomous and Adaptive Systems 4(3), 1-26, 2009.

[20] Fuentes, L., Gamez, N., Sanchez, P. “Aspect-oriented design and
implementation of context-aware pervasive applications”.
Innovations in Systems and Software Engineering , 5(1), 79-93,

2009.

[21] Funk, C., Schultheis, A., Linnhoff-Popien, C., Mitic, J.,

Kuhmunch, C. “Adaptation of Composite Services in Pervasive
Computing Environments”. Proceedings of IEEE International
Conference on Pervasive Services (2007), 242-249. Istanbul,
Turkey.

[22] Genesereth, M.R., Ketchpel, S.P. “Software Agents”.
Communications of the ACM, 37(7), 48-53, 1994.

[23] Ilachinski, A. “Artificial War: Multiagent-Based Simulation of

Combat”. World Scientific (2004), Singapore.

[24] jWebSocket Team. jWebSocket software Web site. Available:

http://jwebsocket.org/ [Accessed 2012-12-15].

[25] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J.M., Irwin, J. “Aspect-oriented programming”.

Proceedings of the European Conference on Object-Oriented
Programming (ECOOP 1997), Lecture Notes in Computer
Science, 1241, pp. 220-242. Aksit, Matsuoka eds. Springer-Verlag,
Berlin, Germany.

[26] Kindberg, T., Fox, A. “System Software for Ubiquitous
Computing”. IEEE Pervasive Computing, 1(1), 70-81, 2002.

[27] Kumar, M., Shirazi, B.A., Das, S.K., Sung, B.Y., Levine, D.,
Singhal, M. “PICO: A Middleware Framework for Pervasive
Computing”. IEEE Pervasive Computing, 2(3), 72-79, 2003.

[28] Kumar, M., Zambonelli, F. “Middleware for pervasive
computing”. Pervasive Mobile Computing, 3(4), 329-331, 2007.

[29] Lauren, M.K., Stephen, R.T. “Map-Aware Non-uniform Automata

(MANA) – A New Zealand Approach to Scenario Modelling”.
Journal of Battlefield Technology, 5(1, March 2002) 27ff.

13 Journal of Computer Sciences and Applications

Available: http://www.argospress.com/jbt/Volume5/5-1-4.htm
[Accessed 2012-12-15].

[30] Luke, S., Balan, G.C., Panait, L.A., Cioffi-Revilla, C., Paus, S.

“Mason: a Java Multi-Agent Simulation Library”. Proceedings of
Agent 2003 Conference on Challenges in Social Simulation .

[31] Minar, N., Burkhart, R., Langton, C., Askenazi, M. “The Swarm

Simulation System: A Toolkit for Building Multi-Agent
Simulations”. Working Paper 96-06-042 (1996), Santa Fe Institute.

[32] Monson-Haefel, R., Chappell, D. Java Message Service. O'Reilly

& Associates (2000).

[33] NetLogo Web site. Available: http://ccl.northwestern.edu/netlogo/

[Accessed 2012-12-15].

[34] Niemelä, E., Latvakoski, J. “Survey of requirements and solutions
for ubiquitous software”. Proceedings of the 3rd International

Conference on Mobile and Ubiquitous Multimedia (2004), 71-78.
College Park, MD.

[35] North, M.J., Collier, N.T., Vos, J.R. “Experiences Creating Three

Implementations of the Repast Agent Modeling Toolkit ”. ACM
Transactions on Modeling and Computer Simulation , 16 (2006),
1-25.

[36] OpenSocial specifications. Available: http://www.opensocial.org/
[Accessed 2012-12-15].

[37] Parker, M.T. “What is Ascape and Why Should You Care?”

Journal of Artificial Societies and Social Simulation , 4(1). 2001.

[38] Parunak, H.V.D., Nielsen, P., Brueckner, S., Alonso, R. “Hybrid

multi-agent systems: integrating swarming and BDI agents”.
Proceeding of the 4th international conference on Engineering
self-organising systems, ESOA'06. Springer-Verlag Berlin,
Heidelberg, 2007.

[39] Pearl, J. Probabilistic Reasoning in Intelligent Systems. Morgan-
Kaufmann (1988), San Francisco, CA.

[40] Pham, H., Paluska, J.M., Saif, U., Stawarz, C., Terman, C., Ward,

S. A dynamic platform for runtime adaptation. Pervasive and
Mobile Computing, 5(6), 676-696, 2009.

[41] Pitt, E., McNiff, K. Java.rmi: the Remote Method Invocation
Guide. Addison-Wesley 2009.

[42] Platon, E., Mamei, M., Sabouret, N., Honiden, S., Parunak, H.V.

“Mechanisms for environments in multi-agent systems: Survey
and opportunities”. Autonomous Agents and Multi-Agent Systems,
14(1), 31-47, 2007.

[43] Poggi, A. “Developing Ontology Based Applications with O3L”.
WSEAS Transactions on Computers, 8(8), 1286-1295, 2009.

[44] Poggi, A., Tomaiuolo, M., Turci, P. “ Service Composition in

Open Agent Societies”. Proceedings of WOA, 92-99, 2003.

[45] Pokahr, A., Braubach, L., Lamersdorf, W. Jadex: A BDI

Reasoning Engine. Multi-Agent Programming, 149-174, 2005.

[46] Porekar, J., Dolinar, K., Jerman-Blazic, B. “Middleware for
Privacy Protection of Ambient Intelligence and Pervasive

Systems”. WSEAS Transactions on Information Science &
Applications, 3(4), 633-639, 2007.

[47] Raatikainen, K., Chrisrensen, H.B., Nakajima, T. “Application

requirements for middleware for mobile and pervasive systems”.
ACM SIGMOBILE - Mobile Computing and Communications
Review, 6(4), 16-24, 2002.

[48] Rao, A.S., Georgeff, M.P. “Modeling rational agents within a
BDI-architecture”. Proceedings of Knowledge Representation and
Reasoning (Apr. 1991), 473-484. Fikes & Sandewall eds. Morgan

Kaufmann Publishers, Inc.

[49] Rashid, A., Kortuemì, G. “Adaptation as an Aspect in Pervasive
Computing”. Proceedings of the Workshop on Building Software

for Pervasive Computing at the Conference on Object -Oriented
Programming Systems, Languages, and Applications, OOPSA
2004. Vancouver, Canada.

[50] Saha, D., Mukherjee, A. Pervasive Computing: A Paradigm for
the 21st Century. Computer, 36(3), 25-31, 2003.

[51] Satyanarayanam, M. “Pervasive Computing Vision and

Challenges”. IEEE Personal Communications, 6(8), 10-17, 2001.

[52] Searle, J.R. Speech Acts: An Essay in the Philosophy of Language.

Cambridge University Press (1969).

[53] Sheu, R., Czajkowski, M., Hofmann, M.O., Schow, G.
“Multiagent-based adaptive pervasive service architecture

(MAPS)”. Proceedings of the 3rd workshop on Agent-oriented
software engineering challenges for ubiquitous and pervasive
computing, AUPC 2009 (pp. 3-8). New York.

[54] Sousa, J.P., Poladian, V., Garlan, D., Schmeri, B., Shaw, M.

“Task-based adaptation for ubiquitous computing”. IEEE
Transactions on Systems, Man, and Cybernetics, 36(3), 328-340,
2006.

[55] Soylu, A., De Causmacker, P., Desmet, P. “Context and
Adaptivity in Pervasive Computing Environments: Links with

Software Engineering and Ontological Engineering”. Journal of
Software, 4(9), 992-1013, 2009.

[56] Tesauro, G., Chess, D.M., Walsh, W.E., Das, R., Segal, A.,

Whalley, I., Kephart, J.O., White, S.R. “A Multi-Agent Systems
Approach to Autonomic Computing”. Proceedings of the 3rd
international Joint Conference on Autonomous Agents and
Multiagent Systems (2004), 464-471. New York, NY.

[57] Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A.,
Phillips-Wren, G. “Innovations in multi-agent systems”. Journal
of Network and Computer Applications, 3(30), 1089-1115, 2007.

[58] Winikoff, M. “Jack Intelligent Agents: An Industrial Strength
Platform”. Multiagent Systems, Artificial Societies, and Simulated
Organizations, (15), Multi-Agent Programming II, 175-193, 2006.

[59] Wooldridge, M. “The Logical Modelling of Computational Multi-
Agent Systems”. PhD thesis, Department of Computation, UMIST,
Manchester, UK (Oct. 1992). Also available as Technical Report

MMU–DOC–94–01, Department of Computing, Manchester
Metropolitan University, Chester St., Manchester, UK.

