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Abstract  In this article, we evaluate features and algorithms for the task of prosodic boundary prediction for 

Greek. For this purpose a prosodic corpus composed of generic domain text was constructed. Feature contribution 

was evaluated and ranked with the application of information gain ranking and correlation -based feature selection 

filtering methods. Resulted datasets were applied to C4.5 decision tree, one-neighbour instance based learner and 

Bayesian learning methods. Models performance exploitation led as to the construction of a practically optimal 

feature set whose prediction effectiveness was evaluated with two prosodic databases. In terms of total accuracy and 

F-measure, evaluation results established the decision tree effectiveness in learning rules for prosodic boundary 

prediction. 
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1. Introduction 

A text -to-speech (TtS) system is considered as a 

framework able to perform the conversion of text to 

synthetic speech. In this undertaking, several steps are 

carried  out between the input informat ion (text) and the 

output (synthetic speech). Macroscopically a TtS is 

composed of two major parts, the front-end and the back-

end. Front-end accepts raw text as input and generates a 

symbolic representation of prosody that will be utilized for 

the pitch contour rendering. Finally, the back-end will 

process the resulted pitch contour for the generation of the 

synthetic waveform. Accurate construction of an 

appropriate pitch contour heavily depends on the utilized 

prosodic event description model. Extensive research led 

to the construction of a wide array of prosodic models 

examining the various prosodic events from d ifferent 

levels of representation; that is, acoustic level, perceptual 

level, and linguistic level [1]. In  this art icle a linguistic 

prosodic model for the task of automatic prosodic 

phrasing of Greek utterances  is utilized. Specifically, the 

adaptation of ToBI (Tone and Break Indices) [2] labelling 

system for Greek, the GrToBI (Greek Tone and Break 

Indices) [3] was utilized.  

Prosodic phrasing segregates utterances into 

meaningful segments of informat ion [4]. These 

prosodic ‟chunks‟ occur as the speaker pauses at word 

junctures. Such pauses are known as prosodic phrase 

breaks. Since phrase breaks convey informat ion of the 

spoken message, correct insertion in the appropriate word 

juncture is considered an important part o f a TtS system. 

Accurate prediction of phrase breaks will affect modules 

of the TtS framework such as the duration module, the 

energy module and rendering of the pitch contour of a 

sentence [5]. Mistakes on this level can cause loss of 

naturalness and intelligibility which results  alteration to 

the meaning of the produced sentence. 

In the past, such prediction was conducted using simple 

phrasing algorithms [6] based on orthographic indicators, 

keywords or part-of-speech (POS) spotting and simple 

timing in formation. Research on the location of prosodic 

phrase breaks was based on the relationship of prosodic 

and syntactic structures. Rule -based approaches [7] 

applied to this particular task were most successful in 

applications where syntactic and semantic informat ion 

were availab le during the generation process. Manually 

written rules are considered as the simplest approach of 

assigning prosodic phrase boundaries; even a model which 

simply inserts breaks after punctuation is rarely wrong, 

but massively underpredicts as it will allow overly long 

phrases when the text contains no punctuation. Moreover, 

complex ru le driven models [8] involve much more 

detailed rules and require the input text to be parsed. 

Another weakness of this particular approach is that even 

if accurate syntactic and semantic informat ion could be 

obtained automatically and in real t ime for TtS, such 

hand-crafted rule systems are extremely  difficult  to build  

and maintain.  

Recent research on the assignment of prosodic phrase 

structure of text has been turned to corpus -based 

modelling. This approach offers the advantage of 

automatic construction of phrasing rules by train ing 

machine learning  algorithms with large labelled corpora 

[9]; thus, making the adaptation to a new domain or 

language easier. There have been a number of models 

developed for the task of predict ing prosodic boundaries, 

raging from tree-based learners [10], neural networks [11], 

transformational rule-based learning [12], Hidden Markov 

models [13], memory-based learn ing [14] to Bayesian 

learning [15]. 



62 Journal of Computer Sciences and Applications   

In this paper, we evaluate features and present results of 

phrase break classificat ion models constructed with the 

application of machine learn ing algorithms for Greek 

language. Regarding models construction, we utilized the 

well known C4.5 decision tree [16], one neighbour 

instance-based learner (IB1) [17], naive Bayes [18] and 

Bayesian networks [19]. Learn ing process was conducted 

with the employment of easy to ext ract morpho-syntactic 

features. Prior to learning process, we evaluated the 

feature effectiveness for given task by applying our data to 

two attribute selection approaches, the informat ion gain 

ranking and the correlation based feature filtering. 

Attribute evaluation step led as to the construction of an 

optimal dataset (referred to as “practically” optimal, since 

it was obtained after exp loit ing the models performance 

that resulted from the feature ranking step), by excluding 

features with low contribution to the classification 

performance. Finally, two Greek prosodic databases were 

utilized  for examining the effect iveness of the 

“practically” optimal feature set to the given task. 

The rest of the art icle is organized as fo llows. Section 2 

describes and presents details about the prosodic corpora 

utilized in our experiments. In section 3, the set of lexical 

and linguistic features extracted from our ToBI annotated 

data is presented and discussed. A short description of the 

utilized  machine learn ing algorithms is presented in 

section 4. Section 5 explains the filtering methods applied 

to our initial dataset for the task of feature evaluation as 

regards Greek language. Finally, section 6 exp lains the 

structure of the process of conducting experiments  and 

presents the results. 

2. Prosodic Database Structure and Development 

Extensive research in the area of speech synthesis has 

shown that TtS components containing quantitative 

models (duration module) as well as components with 

discrete output (such as accenting and phrasing modules) 

require train ing databases that cover effectively  the output 

domain of an application [1]. This conclusion dictates the 

need of prosodic databases with adequate phonetic and 

prosodic coverage. Regard our data, those requirements 

were attained by selecting text corpora from a large 

amount of textual material. The init ial text corpus was 

collected from newspaper articles and paragraphs of 

literature. Subsequently, the text corpus was applied as 

input to the letter-to-sound component producing a 

phoneme list as well as a d iphone list. Finally, both 

phoneme and diphone lists were applied to the greedy 

algorithm [20]. Tthe acquisition of an optimal subset of 

the initial text  corpus, containing all the Greek phonemes 

as well as various intra-syllab ic allophones in different 

positions in a word  structure was tge result of this 

endeavour.  

 

Figure 1. (a) Number of sentences per utterance (b) number of words per sentence 

A major obstacle in constructing a corpus with adequate 

prosodic coverage is the absence of a clear definit ion 

(regarding synthesis research) of the requirements that 

describes it. Compared to  the phonetic coverage, there is 

litt le literature talking about the requirements that should 

be followed, especially fo r Greek. Therefore, based on the 
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assumption that prosodic events formation is closely 

related to the syntactic structure of a sentence [21], we 

focused on the proper sentence type selection and their 

phrasal syntactic patterns. In dealing with cases of rare 

intonational and phonological phenomena, appropriate 

text was composed by linguists. Thus, various factors 

were controlled in an easier way. 

The final text corpus was consisted of 5.500 words 

distributed in almost 494 utterances, 390 of which are 

declarative sentences, 44 exclamation sentences, 36 

decision questions and 24 Wh-questions. Each sentence of 

the corpus could be a single word, a short sentence, a long 

sentence, or a sequence of sentences. In Figure 1a the 

number of sentences per utterance distribution is described 

while Figure 1b depicts the word number per sentence 

distribution. Each utterance of our text corpus could be 

composed of 1 to 13 sentences (with an average value of 3 

sentences per utterance) while each sentence could contain 

from 1 to 47 words (12 words on average per utterance).  

Besides sentence type, factors such as syntax, 

morphology, pragmat ic and semantic informat ion 

(Hirschberg, 1993) [22] or knowledge of “newness” and 

given informat ion of the spoken message (Prevost, 1995) 

[23], should also be considered in  order to determine the 

intonational pattern of an utterance. The task of ext racting 

such informat ion from text  would require its syntactic, 

semantic and pragmatic analysis. Since the only 

informat ion that could be examined without hand labelling 

were the morphological and syntactical properties of each 

sentence, we chose part-of-speech (POS) along with 

syntactic phrase boundaries as the major factors that 

should be considered for analysis.  

2.1. Part of Speech and Syntactic Phrase Boundary 

Detection 

POS tagging and syntactic phrase boundary detection 

was carried out with the application of automatic methods, 

followed by hand correcting the results. MG has a 

complex inflectional system. There are eleven different 

POS categories: art icles (ART), nouns (N), adjectives 

(ADJ), pronouns (PN), verbs (V) and numerals (NUM) are 

declinable while adverbs (ADV), prepositions (PRE), 

conjunctions (CON) and particles (PRT) are indeclinable. 

For our purpose, we used a 2-level morphological 

analyzer fo r MG (Sgarbas et al., 1999) [24]. Figure 2 

depicts the POS distribution in the final text corpus of the 

prosodic database. 
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Figure 2. Part of speech distribution in the text corpus 
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Figure 3. Syntactical phrase boundary distribution in the text corpus 

The syntactic phrase boundary detector [25], or chunker,  

is based on very limited linguistic resources, i.e. a small 

function word lexicon containing  some 450 keywords 

(articles, pronouns, auxiliary verbs, adverbs, prepositions 
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etc.) and a suffix lexicon of 300 of the most common word  

suffixes in MG. In a first stage the boundaries of non-

embedded, intra-sentential noun (NP), prepositional (PP), 

verb (VP) and adverbial phrases (ADP) are detected via 

multi-pass parsing. Smaller phrases are formed in the first 

passes, while later passes form more complex structures. 

In a second stage the head-word of every phrase is 

identified and the phrase inherits  its grammat ical 

properties. Figure 3 depicts the distribution of the 

syntactical chunk categories in our database.  

2.2. Speaking Style and Recording Session 

Another major problem in  the development of a 

prosodic database is the speaking style selection. Given 

that the main task of a TtS system is to read aloud written 

text, it seemed more appropriate to produce intonation of 

text  reading. Thus, a female professional radio actress was 

instructed to read the selected sentences with reading style, 

in a normal speaking rate. A program was designed for the 

recording of the speech corpus. The text scripts were 

shown on a monitor and the recording was activated by 

the time the speaker started to read the sentence. The 

speaker was a Greek native about 30, speaking with the 

Athenian accent. In case of hesitations or mistakes, the 

speaker was asked to repeat the sentence until it was 

clearly pronounced. Thereby a reduction of errors in the 

labeling procedure could be achieved. The recording 

session was held in an  anechoic chamber of a professional 

studio and took approximately 2 hours for the speaker to 

utter the whole text  corpus. Recorded speech was sampled 

directly onto a DAT tape using a sampling frequency of 

44.1kHz. The final data was composed of 50 minutes of 

clear speech, sampled onto the hard disc with a sampling 

frequency of 16 kHz with a resolution of 16 b it.  

2.3. Prosody Annotation 

As mentioned earlier description of prosody could be 

conducted on an acoustic, perceptual or linguistic basis. 

Each one of those perspectives corresponds to a different 

stage in the processing of prosodic information in spoken 

language interaction. The acoustic models of intonation 

include the Fujisaki‟s model [26], RFC [27], p robabilistic 

models [28] and Tilt  (Taylor 00) [29]. On the other hand 

the perceptual approach comprises the IPO model [30] and 

the automatic perceptual stylizat ion model [31]. Finally, 

intonational models derived from linguistic analysis 

include the intonation theory. Since our goal was not only 

the reconstruction of intonational patterns, but also the 

exploration of effect ive linguistic features and the 

comprehension of the syntax-to-intonation relationship of 

Greek, we have chosen the ToBI model. Additional 

reasons that led as to such a decision were the following: 

● ToBI is considered a standard scheme focusing on 

prominence and phrasing, 

● designed in such a way that it  is reproducible with 

good inter-transcribers agreement, 

● and machine readable. 

2.4. The GRToBI Prosody Annotation System 

GRToBI encodes prosodic information for (Standard) 

Greek spoken corpora. In part icular, it was designed for 

Greek as spoken in  Athens. A GRToBI transcription of an 

utterance consists of its recording, an associated record of 

the pitch contour informat ion and a file containing the 

GRToBI annotation tiers. The GRToBI framework is 

described by a five tiered annotation schema. Specifically, 

we have a tone tier for the intonational analysis, the 

prosodic words tier for phonetic transcription, a words tier 

for the text in Greek, a b reak index t ier for indices of 

cohesion and a miscellaneous tier for other informat ion 

(such as breathing, cough, etc). All the annotated 

informat ion contained in the ToBI layers was aligned with 

time axis.  

Transcribers were two linguistics graduate students and 

one postdoctoral researcher. The labelling of the 

intonational phenomena had been conducted main ly by 

listening to the recorded utterance in conjunction to 

observation of amplitude and pitch contour of the speech 

signal. The annotator‟s transcription consistency was 

further evaluated by cross checking statistically our data 

with a prosodic corpus constructed at the University of 

Athens for speech synthesis purposes [32].  

2.4.1 The Break Index Tier 

For the description of the perceived strength of each 

word boundary, ToBI formalization utilizes the break 

index tier. There are four different indices representing 

boundaries of different prosodic levels ranging from 0 

(weaker boundary) to 3 (stronger boundary), 

● Break index 0 (b0) indicates the total cohesion 

between orthographic words. A b0 break index denotes 

the presence of a single prosodic word (PrWord); co-

articulation effects occur across the word boundary. 

● Break index 1 (b1) marks boundaries between 

PrWords. Items separated by break index b1 should at 

most carry one pitch accent each.  

● Break index 2 (b2) indicates the boundaries of an 

intermediate phrases (ip).  

● Break index 3 (b3) denotes the boundaries of 

intonational phrases (IP).  

Table 1 tabulates the number of occurrences of phrase 

break categories in our data.  

Table 1. Break indices number of occurrence per word 
Break Index Number of occurrence 

b0 1866 

b1 2297 
b2 602 

b3 733 

Figure 4 illustrates the correlation of break indices and 

punctuation as it was found in our data. We assume three 

levels of breaks occurred  from punctuation, P0 where no 

punctuation existed, P2 in  the case of a minor punctuation 

(„,‟) and P3 for major punctuation („.‟, „!‟, „?‟). It clearly  

shows that b0 class is never assisted by a punctuation 

mark. As regards b1 class, the 91% of the occurrences are 

not assisted by punctuation while the rest of them are 

followed by minor punctuation. 

Situation gets more complicated for b2 and b3 classes 

where both are encountered in the presence of minor or 

major punctuation as well as in  absence. Non breaks (b0 

and b1) were the most frequent categories in our prosodic 

database; in general, breaks (b2 and b3) are expected to be 

fewer than non-breaks. Since b1 category could perhaps 

be assigned, almost by default, between each  pair of 

words within a sentence unless there is a punctuation mark 

to prevent it, high predict ion results are expected. On the 
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other hand b3 class is encountered most of the times at the 

end of a sentence. This leaves the (tricky  even for 

transcribers) question of determining a sentence-internal 

break to be either b2 o r b3, based on the dependency 

relations between adjacent phrases. 

Although most researchers agree that several boundary 

strengths must be assumed, there is no general agreement 

on issues such as the number and types of boundaries that 

need to be distinguished. In the case of prosodic phrase 

break pred iction within TtS, it  is common to flatten the 

prosodic; hence a word juncture is considered to be a 

break or a non break h ierarchy [5]. In an effort to deviate 

from that, we considered word junctures of the entire 

possible phrase break label set proposed by the GRToBI 

transcription. Therefore, our phrase break label files 

contain break indices ranging from 0 to 3, where the larger 

number represents the end of a prosodic boundary and all 

the other numbers denote gradually a lower degree of 

decoupling.  

0

10

20

30

40

50

60

70

80

90

100

b0 b1 b2 b3
Phrase Break Class

F
re

q
u
en

cy
 o

f 
o
cc

u
re

n
ce

 (
%

)

P3

P2

P0

 

Figure 4. Finite-state grammar for tone sequences in GRToBI 

3. Features for Prosodic Phrasing Prediction 

It is well established that for an accurate pred iction of 

break indices, the extraction of textual information such as 

syntax and POS sequences is essential. In that way the 

correlation found between syntax, morphology and 

prosodical structure of an utterance is exp loited. Since 

syntactic informat ion retrieval requires both a reliable 

parser and a syntax-to-prosody module (which are usually 

implemented with the induction of rule driven methods 

making them complicated to write, modify, maintain  and 

adapt to new domains and languages), we explo ited 

syntactic phrase boundaries informat ion along with 

features correlating it with the distance of adjacent 

syllables. 

Considering the nature of the TtS synthesis challenge, 

only those features that can be automatically derived from 

text  were considered. The in itial feature set of our train ing 

data does not contain any attribute related to accent. We 

came up to this option due to the fact  that prosodic 

phrasing is regarded as a task that precedes the prediction 

of accentual phenomena [5] in  a TtS system. Thus, our 

initial feature set contains only morphological, syntactical, 

syllabic as well as contextual features which correlate 

lexical stress position, punctuation, syntactic boundaries, 

etc. The features utilized in  our corpus are presented and 

described below,  

● stress: whether a particu lar syllable is bearing a 

lexical stress  

● syl.in: the number o f syllables since last (,) or (.)  

● syl.out: the number of syllables until next  (,) or (.)  

● ssyl.in : number of stressed syllables since last (,) or (.)  

● ssyl.out: number of stressed syllables until next (,) or 

(.)  

● last.syl.in.phrase: whether a syllable is the last in the 

lexical phrase or not  

● last.ssyl.in.phrase: a syllab le is the last stressed in the 

lexical phrase or not  

● syl.onsetsize: number of phonemes before the vowel 

of a syllable  

● syl.codasize: number of phonemes after the vowel of 

the syllable  

● position.type: position of the syllable within the word  

● word.numsyls: number of syllab les in the word  

● POS: part of speech of the word  

● wrd.stress.strct: index of stress syllable in the word  

● chunk: syntactic phrase boundary information  

● brk.pnct: an indication  of minor (‟,‟) or major 

punctuation (‟.‟, ‟ ?‟, ‟ !‟)  

● chunk.in: a binary indicator showing whether a word  

belongs to a different syntactic chunk than its previous 

one  

● chunk.dist: distance in words from the beginning of 

the next syntactic chunk or of a major punctuation break  

● chunk.neighb: a binary indicator that shows whether 

a word  belongs to the same syntactic chunk with its next  

one  

● fc.POS: feature describing a particu lar word as 

function (FW) or content (CW)  

● word.in: number of words since last (,) or (.)  

● word.out: number of words until next (,) or (.)  

A window of [-2, 2] to the potential boundary for each 

of the above features with  exception to chunk.dist where a 

window of [-1, 1] was applied, [30]. Furthermore, to 

word.in, word.out, syl.in, syl.out, ssyl.in, ssyl.out, 

syl.codasize and syl.onsetsize no window was applied at 

all. 

4. Prosodic Boundary Classification Framework 

Several approaches for the task of automatic rule 

extraction from data have been developed [34] having 

different behaviour regarding their efficiency with certain  

types of class distribution than others. For our 
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experimental setup a set of representative learning 

methods for the task of phrase break prediction were 

employed. Thus windowed data described above, were 

applied to C4.5 decision tree, IB1 learner, naïve Bayes and 

Bayesian networks.  

Decision trees have long been placed among the most 

practical and straightforward  approaches to the task of 

classification [35,36]. Induction of decision trees is a 

method that generates approximations to discrete-valued 

functions with robust performance in the presence of noise. 

Furthermore, decision trees can be easily transformed to 

rules that are comprehensible by people. Decision tree 

classification has been applied successfully to natural 

language processing (NLP) tasks such as sentence 

boundary disambiguation [37], POS tagging [38] and 

syntactical parsing [39]. In the area of TtS synthesis, they 

have been applied for the correct p lacement of 

intonational information [40] as well as pred iction of 

segmental durations [41]. 

Bayesian analysis was adduced regarding the impact 

certain linguistic attributes pose to the task of correctly 

identifying the prosodic phrase breaks by considering both 

the naïve Bayes and Bayesian network probabilistic 

assumptions. In our approach, we define a probabilistic 

model for resolving IP b reak disambiguation over a search 

space H*T, where H is the set of possible lexical and 

labelling contexts {h1,…,hk} or “variab les” and T is the 

set of allowable phrase break labels {t1,…,tn}. There are 

two possible assumptions that can be considered, 

regarding whether the t rain ing features are considered 

independent of each other or taking into account a specific 

kind of dependency among all or a subset of them. If we 

assume that each lexical item is independent of all others, 

we adopt the naïve Bayes approach, while in the case of 

taking into consideration the dependency of lexical items, 

we apply the Bayesian networks approach 

The Instance-Based (IBk) learning algorithm represents 

the learned knowledge simply as a collection of train ing 

cases or instances. It is a fo rm of supervised learning from 

instances; it keeps a full memory of training occurrences 

and classifying new cases using the most similar train ing 

instances. A new case is then classified by finding the 

instance with the highest similarity and using its class as 

prediction. IBk algorithm is characterized by a very low 

training effort. This leads to high storage demands caused 

by the need of keeping all training cases in memory. 

Furthermore, one has to compare new cases with all 

existing instances, which results in a h igh computation 

cost for classification. After an  extensive number of 

experiments we concluded to the utilizat ion of IBk for k=1 

(one neighbour). All algorithms were acquired from the 

WEKA machine learning library [34]. 

5. Feature Evaluation 

The majority of machine learning algorithms are 

designed to decipher the most appropriate features and to 

utilize  them for carry ing out their decision. Decision tree 

methods, for example, choose the most promising attribute 

to split on at each point and, theoretically, never select 

irrelevant or unsupportive attributes. Thus, the higher the 

number of features the more discriminating power of the 

classifier; which is not correct since adding irrelevant or 

distracting attributes to a dataset often perplexes machine 

learning systems. Furthermore, decision tree classification 

performance is affected dearly with the addit ion of a 

random binary attribute, causing it to deteriorate. Thus, 

during decision tree‟s learning process an inappropriate 

attribute is always chosen to branch on, causing random 

errors during evaluation process. As you decent further 

down the tree structure, less data is available to assist the 

selection decision. Meaning that, at a certain point of the 

training procedure you inevitably reach depths at which 

only a small amount of data is availab le for attribute 

selection. When training is carried out with large datasets 

it would not necessarily help an attribute selection 

procedure; since you would possibly grow a larger tree. 

However in  the case of s mall train ing datasets, as ours, 

attribute selection step is considered essential.  

Div ide-and-conquer tree learners and separate-and-

conquer rule learners both suffer from this effect for the 

reason that they inexorab ly reduce the a mount of data on 

which they base judgments. As regards instance-based 

learners, they are very susceptible to irrelevant attributes 

as they always work in local neighbourhoods, taking a few 

training instances into account for each decision. It has 

been shown that the number of train ing instances needed 

to produce a pretender-mined level of performance for 

instance-based learning increases exponentially with the 

number of irrelevant attributes present [42]. Finally, a  

classifier like naive Bayes which assumes  by design, that 

all attributes are independent of one another, is also 

affected by irrelevant attributes since its operation is 

damaged by their presence. All the above establish the 

necessity of an attribute filtering step to our classification 

framework since it, reduces the dimensionality of the data 

by deleting unsuitable attributes and improves the 

performance of learn ing algorithms and presents 

knowledge regarding the contribution of each feature for 

the task of phrase break classification.  

Algorithms that perform feature selection as a pre-

processing step prior to learning can generally be placed 

into one of two broad categories. One approach referred to 

as the wrapper [43] employs a statistical re-sampling 

technique (such as cross validation) using the actual target 

learning algorithm to estimate the accuracy of feature 

subsets. This approach has proved useful but it is very 

slow to execute because the learning algorithm is called 

repeatedly. Another approach called the filter [44] 

operates independently of any learning algorithm -

undesirable features are filtered out of the data before 

induction commences.  

For our experiments we selected to exp loit two well 

established approaches for feature evaluation, the 

Information Gain (IG) approach and the Correlation-

Based feature selection (CFS) [45]. Both attribute 

selection methods belong to the filter category. IG was 

selected since, with the applicat ion of ranker method, 

produces the ranking  of all features in  the dataset based to 

their contribution to the classificat ion of the desired 

category. On the other hand CFS selection was selected 

since it evaluates the worth of feature subsets of a given 

dataset. It has been shown [45] that CFS performance 

compares favourably with the wrapper but requires much 

less computation. Both feature selection approaches were 

not performed on the full dataset; instead 10 fold cross 

validation [46] was utilized. 
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5.1. Information Gain Feature Ranking 

Table 2 tabulates the IG ranking of our in itial feature 

set of the prosodical database (where pp.means previous 

previous, p.means previous, n.means next and nn.means 

next next for a [-2, 2] window). The analysis of Table 2 

data, verified that phrase break class is highly correlated 

with  almost every feature containing knowledge of  lexical 

phrasing. Specifically, lexical punctuation (brk.pnct) 

showed the highest IG, followed by word.out, in contrast 

to word.in  which had a low position to the ranking table. 

Attributes representing knowledge of POS, 

function/content word distinction, or syntactical phrasing 

identity of the word  (chunk) also benefited the 

classification task. It is important to emphasize the fact 

that the introduced features combining syntactical 

phrasing identity (chunk) with its position to the sentence 

structure (chunk.neighb, chunk.in, chunk.d ist) showed 

higher IG than the chunk attribute itself. Features 

conveying morphological in formation such as word stress 

structure (word.stress.strct), number of syllab les of a word  

(word.numsyls) was highly correlated to the prosodic 

boundary class. On the other hand many of the 

phonological (syllabic) features were not used at all. The 

resulted ranking of features for Greek validates the 

observation of previous works in several languages 

claiming that prosodic boundaries prediction is strongly 

connected to the morpho-syntactic structure of the 

utterance [5].  

Table 2. Feature information gain ranking 

Features pp p C n nn 

brk.pnct 23 11 1 7 13 

word.out 2     

POS 44 34 3 21 14 

word.stress.strct 55 56 4 25 19 

word.numsyls 49 47 5 24 17 

position.type 50 22 6 12 15 

syl.out 8     

fc.POS 59 57 9 28 20 

ssyl.out 10     

chunk.neighb 70 54 16 31 33 

last.syl.in.phrase 68 62 27 29 42 

last.ssyl.in.phrase 61 36 30 48 65 

chunk.dist 45 35 32   

syl.in 38     

word.in 40     

ssyl.in 41     

chunk 53 46 43 26 18 

chunk.in 66 60 51 37 39 

sStress 69 67 52 71 63 

syl.codasize 58     

syl.onsetsize 64     

5.2. Correlation Based Feature Subset 

Filtering of a given feature set with CFS is carried out 

by taking into account the usefulness of individual 

features for predicting the class label along with the level 

of intercorrelation among them. In specific, it assumes that 

an optimal feature subset should contain features highly 

correlated with the class, yet uncorrelated with each other. 

Initially, feature-class and feature-feature correlat ions are 

calculated with the employment of symmetrical 

uncertainty followed by the searching of feature subset 

space. The subset with the highest relevance to the class is 

used to reduce the dimensionality of both the original 

training data and the testing data. Both reduced datasets 

may then be passed to a machine learn ing algorithm for 

training and testing. 

Application of CFS filter to our dataset resulted a 

feature subset constituted of, p.brk.pnct, brk.pnct, 

n.brk.pnct, POS, word.stress.strct, position_type, fc.POS, 

chunk.neighb. The fact that certain features achieved a 

high ranking position in IG filtering  and were not selected 

by CFS, was due to their high correlation with other 

features that were already selected by the selection 

procedure since they were more connected to the class. 

6. Experimental Framework 

The evaluation schema followed in this work is 

composed of three parts. Init ially, based on IG feature 

ranking results, datasets were built in the following 

manner; the first dataset contained only the first feature of 

IG ranking (that is c .brk.pnct feature, Table 2), the second 

dataset was composed of the previous dataset plus the next 

feature with highest IG (that is c.word.out). Fo llowing that 

pattern and by adding the next feature in  the IG ranking to 

the former dataset, we would  be ab le to  have an insight of 

feature efficiency to the given task by taking into account 

its correlation with the previous features.  

The second part in our experimental framework was the 

construction of phrase break models by training the 

selected machine learn ing classifiers with the CFS subset. 

Finally, in  the third  part, construction and evaluation of 

the “practically” optimal dataset was performed. This 

dataset was resulted from the initial feature repository by 

excluding attributes having a negative contribution to 

prediction‟s total accuracy. The contribution was based on 

the experiments carried out with the IG ranked datasets. 

The “practically” optimal dataset efficiency was evaluated 
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with experiments on our prosodic database as well as on a 

limited domain database previously utilized for prosodic 

modelling of Greek speech.  

Performance of the resulted prosodic boundary 

prediction models was measured with the employment of 

total accuracy and F-measure per class. F-measure metric 

is defined as the harmonic mean of precision and recall. 

All boundary prediction models were evaluated with the 

utilizat ion of 10 fold cross validation methodology.  

6.1. IG Ranked Feature Datasets Evaluation 

Figure 5 illustrates the total accuracy of C4.5, IB1, 

Naïve Bayes and Bayesian network prosodic phrase break 

models trained with datasets resulted from the IG filtering 

step. It is clearly shown that C4.5 results models with 

higher total accuracy compared to those acquired with the 

other classification algorithms. Specifically, C4.5 models 

achieved a mean total accuracy of 85.56% while IB1 had 

76%, naive Bayes 74.67% and Bayesian Networks 

77.12%. 

C4.5 models total accuracy seems more stable, 

compared to the other learning schemas, in  the addition of 

ranked features. This can be exp lained by the detail that, 

during C4.5 tree growing procedure less relevant features 

to the classification category, are used to nodes residing 

lower to the tree structure. Thus, superior discrimination 

capability compared to the other algorithms for the IG 

ranked datasets was achieved.  

 

Figure 5. Total accuracy of learning models trained with IG ranked datasets. 

In order to posses a better comprehension of each 

model‟s performance concerning phrase break prediction, 

the F-measure scores achieved for each class are presented 

in Figures 6 a, b, c and d. Assumptions made in section 

2.4.1 regarding the non-break and break classes, are 

clearly displayed in Figure 6. In specific, Figures 6.a and 

6.b which illustrate the F-measure scores of the non-break 

classes, shows that both were robustly predicted with a 

mean F-measure score, for all t rain ing datasets and 

learning methods, of 82% and 83% respectively. C4.5 had 

the highest F-measure score for both classes, with  a max 

value of 90.8% for b0 and 91,4% for b1 among all IG 

filtered datasets. Figures 6.c and 6.d present the F-measure 

scores of break classes, b2 and b3. For these categories, 

C4.5 showed a maximum F-measure of 72%, IB1 59%, 

Naïve Bayes 45,4% and Bayesian networks 50%. A closer 

inspection of Figure 6.c reveals that prediction of b2 

category was enhanced greatly with the addition of 

word.out, word.stress.strct, chunk.neighb, word.numsyls 

and syl.in for all learning schemas.  

6.2. CFS Subset Evaluation Results 

The second part of our feature and algorithm evaluation 

describes the experiments carried out with the CFS subset. 

As explained in  section 5.2, the CFS procedure produces a 

minimal subset of attributes that are highly correlated to 

the predicted class. The total accuracy scores of the 

models resulted from CFS subset training were 86.38% 

for C4.5, 85.95% for IB1, 75.65% for naive Bayes and 

77.21% for the Bayesian networks.  

For this subset of features all algorithms performed  

equally well as regards the prediction o f b0, b1 and b3 
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classes. Furthermore, C4.5 and IB1 outperformed naive 

Bayes and Bayesian networks for the prediction of the b2 

category. Figure 7 depicts that C4.5 and IB1 performed  

better for all phrase breaks categories compared to naive 

Bayes and Bayesian networks. In  specific, for the 

prediction of b2 category, C4.5 and IB1 outperformed 

naive Bayes and Bayesian networks models. F-measure 

score achieved for the prediction of b2 category was, 

67.8% and 67.6 % for C4.5 and IB1 while naive Bayes 

and Bayesian networks achieved 31.2% and 30% 

respectively.  
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Figure 6. F-measure scores for (a) b0, (b) b1, (c) b2, and (d) b3 classes 

Table 3, tabulates the confusion matrixes o f the CFS 

models. Each co lumn of the matrix represents the 

instances in a predicted class, while each row represents 

the instances in an actual class. Furthermore, in Table 4 

the true positive (TP) and false positive (FP) values for the 
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CFS models trained with C4.5, IB1, naive Bayes and Bayesian networks are tabulated. 
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Figure 7. F-measure scores of CFS subset trained models 

An interesting remark that can be extracted from Table 

3 and Table 4 is that Bayesian methods confuse less the 

non-break categories with the breaks compared to C4.5 

and IB1. In particu lar the FP scores of b2 and b3 are lower 

in the case of naive Bayes and Bayesian networks 

compared to C4.5 and IB1. Additionally, Tab le 3 shows 

that C4.5 tree inducer confuses less the non-break 

categories with the break categories compared to IB1. 

Table 4 clearly displays that IB1 has the lowest FP score 

for b1 class compared to all other approaches. In contrast, 

C4.5 showed the highest TP for this class. 

Table 3. Confusion matrix of CFS subset trained models 

C4.5 b0 b1 b2 b3 

b0 1332 178 6 8 

b1 160 4367 91 22 

b2 32 438 822 77 

b3 12 87 137 1395 

NaiveB b0 b1 b2 b3 

b0 1336 186 2 0 

b1 446 4099 87 8 

b2 34 927 313 95 

b3 8 200 238 1185 

IB1 b0 b1 b2 b3 

b0 1352 145 20 8 

b1 202 4242 166 30 

b2 36 335 878 121 

b3 14 53 158 1405 

BNet b0 b1 b2 b3 

b0 1330 194 0 0 

b1 337 4252 48 4 

b2 32 945 287 105 

b3 6 204 214 1207 

Table 4. TP and FP values for CFS subset trained models 
C4.5 b0 b1 b2 b3 

FP (%) 2.7 15.5 3 1.4 
TP (%) 87.4 94.1 60.1 85.5 

NaiveB b0 b1 b2 b3 

FP (%) 6.4 29 4.2 1.4 

TP (%) 87.6 88.3 22.9 72.7 

IB1 b0 b1 b2 b3 

FP (%) 3.3 11.8 4.4 2.1 

TP (%) 88.7 91.4 64.1 86.1 

BNet b0 b1 b2 b3 

FP (%) 4.9 29.7 3.4 1.4 

TP (%) 87.3 91.6 21 74 

6.3. Practically Optimal Dataset Evaluation 

Results 

Although total accuracy scores, for all machine learn ing 

schemes, attests the efficiency of IG ranking (and CFS 

filtering), there were cases where a particular feature 

although possessing a high IG rank (or selected in  CFS), 

its application tends to lower the overall classification 

performance (mainly a result of the correlat ion between 

features). Furthermore, features with low IG d id not 

contribute significantly to the overall performance of the 

prediction model (i.e. features from 46 to 70). For 

example, in the case of C4.5 models, Figure 6.d, addit ion 

of nn.gpos (which is in 14 position of the feature ranking 

table) seems to lower the classification performance from 

84.1% to 82.1%. 

For the selection or omission of features performance of 

all approaches from all the carried out experiments (IG 

datasets as well as CFS subset) was taken into account. 

This procedure led us to the construction of a “practically” 

optimal dataset that is consisted of the following features: 
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brk.pnct, word_out, POS, word.stress.strct, word.numsyls, 

ssyl.out, p.brk.pnct, n.position.type, chunk.neighb, n.chunk.dist, 

chunk.dist, p.last.ssyl.in.phrase, syl.in, , chunk, syl.codasize, 

pp.fc.POS, p.chunk.in, pp.last.ssyl.in.phrase. It worths 

mentioning that although certain phonological (syllab ic) 

features were ranked in low positions by IG ranking or not 

selected from CFS filtering appeared to contribute (as 

shown in Figure 5 and Figure 6), thus included to the 

“practically” optimal dataset. Such features were 

syl.codasize, ssyl.out, syl.in as well as the contextual 

pp.last.ssyl.in.phrase. 

Evaluation of the the “practically” optimal dataset was 

carried out with the WCL1 database and a limited domain  

prosodic database [32] that contains prosodic phenomena 

encountered in a museum guided tour. Both corpora were 

cross-checked for their annotation consistency [33]. 

Table 5 tabulates the total accuracy of C4.5, IB1, naive 

Bayes and Bayesian network models trained with the 

“practically” optimal feature set for both prosodic 

databases. It shows that C4.5 phrase prediction model 

performed better compared to all the other algorithms for 

both training domains followed by the Bayesian network 

model. Although “practically” optimal feature set was 

extracted empirically from experiments with the WCL1 

database, limited domain models presented higher total 

accuracy prediction scores for all approaches; this can be 

explained since breaks are described by simpler “rules” 

due to the restrictions of the domain compared to the 

generic characteristics of WCL1 text  corpus.  

Table 5. Total accuracy of WCL1 and limited domain models 
Domain  C4.5 IB1 Naïve 

Bayes 

BayesNet 

WCL1 (%) 88.77 78.91 77.94 82.46 

Limited (%) 90.5 83.34 79.46 83 

Figure 8 depicts the F-measure of each break class for 

WCL1 dataset. It is interesting to detail C4.5 performance 

regarding b2 class prediction; for this particular class it 

achieved an F-measure score of 75% while IB1, naive 

Bayes and Bayesian networks scored 50%, 42.3% and 

56.9% respectively.  
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Figure 8. F-measure of WCL1 models with practically optimal feature set 

Table 6 tabulates the confusion matrixes for each 

machine learning approach while in Table 7 the FP and TP 

scores of the phrase prediction models are presented. 

Table 6. Confusion matrix of the WCL1 models 
C4.5 b0 b1 b2 b3 
b0 1358 155 11 0 
b1 131 4359 123 27 
b2 22 329 943 75 
b3 4 61 89 1477 

NaiveB b0 b1 b2 b3 
b0 1312 192 10 10 
b1 283 4115 143 99 
b2 36 757 470 107 
b3 10 149 226 1246 

IB1 b0 B1 b2 b3 
b0 1318 176 30 0 
b1 208 3919 428 85 
b2 32 464 666 208 
b3 6 121 174 1329 

BNet B0 B1 b2 b3 
b0 1306 194 24 0 
b1 178 4252 204 6 
b2 14 551 735 69 
b3 2 127 238 1264 

Table 7. TP and FP values for the WCL1 models 
C4.5 b0 b1 b2 b3 

FP (%) 2.0 12 2.9 1.4 
TP (%) 89.1 93.9 68.9 90.5 
NaiveB b0 b1 b2 b3 
FP (%) 4.3 24.3 4.9 2.9 
TP (%) 86.1 88.7 34.3 76.7 

IB1 b0 b1 b2 b3 
FP (%) 3.2 16.8 8.1 3.9 
TP (%) 86.5 84.5 48.6 81.5 
BNet b0 b1 b2 b3 

FP (%) 2.5 19.3 6.0 1.0 
TP (%) 85.7 91.6 53.7 77.5 

As shown in Table 7, C4.5 scored the lowest and 

highest scores of FP and TP respectively for all phrase 

break class compared to all the utilized  machine learn ing 

approaches. 

Figure 9 presents the F-measure results for phrase 

prediction obtained from C4.5, IB1, naive Bayes and 

Bayesian networks trained with the “practically” optimal 

set of features for the limited domain data. This figure 
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clearly proves the effectiveness of this feature set and in this case.  
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Figure 9. F-measure of limited domain models with practically optimal feature set 

Table 8. Confusion matrix of the limited domain models 
C4.5 b0 b1 b2 b3 
b0 1060 127 3 0 
b1 116 4053 125 3 
b2 8 197 829 28 
b3 0 16 59 559 

NaiveB b0 b1 b2 b3 
b0 1003 151 29 7 
b1 261 3690 315 31 
b2 30 472 501 59 
b3 6 30 84 514 

IB1 b0 b1 b2 b3 
b0 997 177 16 0 
b1 201 3768 312 16 
b2 15 297 686 64 
b3 0 22 77 535 

BNet b0 b1 b2 b3 
b0 948 204 38 0 
b1 193 3797 300 7 
b2 20 313 696 33 
b3 3 27 83 521 

The “practically” optimal dataset showed a comparable 

performance for both prosodic databases in all learn ing 

schemas. As regards the prediction of b1 and b2 categories, 

limited domain models achieved higher results than those 

scored by the WCL1 models . Th is is explained by the fact 

that WCL1 is composed of more complex prosodic events 

than that of the limited domain prosodic corpus.  

Finally, in Table 8 and Table 9 the confusion matrix 

and the FP and TP scores of the limited domain models 

are tabulated. As in WCL1 datasets , and in the case of 

limited domain datasets the C4.5 model showed the lowest 

FP and the highest TP scores. 

Table 9. TP and FP values for the limited domain models 
C4.5 b0 B1 b2 b3 

FP (%) 2.1 11.8 3.1 0.5 
TP (%) 89.1 94.3 78.1 88.2 
NaiveB b0 b1 b2 b3 
FP (%) 5 22.6 7 1.5 
TP (%) 84.3 85.9 47.2 81.1 

IB1 b0 b1 b2 b3 
FP (%) 3.6 17.2 6.6 1.2 
TP (%) 83.8 87.7 64.6 84.4 
BNet b0 b1 b2 b3 

FP (%) 3.6 18.8 6.9 0.6 
TP (%) 79.7 88.4 65.5 82.2 

7. Conclusions 

In this article, feature and algorithm evaluation was 

conducted for the task o f intonational prosodic boundaries 

prediction for the Greek language. Initially, the utilized 

prosodic corpus was analyzed and textual, lexical, 

morphological and shallow syntactical features were 

extracted on word and syllabic level. Features contribution 

to the task was measured with the utilizat ion of 

informat ion gain and correlation based feature subset 

methods. From the feature ranking we constructed a total 

of 70 datasets while filtering method outputted an 

“optimal” subset of features. All datasets were applied to 

C4.5, IB1, naive Bayes and Bayesian network learn ing 

schemas. Taking into account the resulted total accuracy 

of all prediction models we were led to the construction of 

a “practically” optimal set of features. The effect iveness 

of “practically” optimal feature set was evaluated with 

WCL1 database as well as with a limited domain prosodic 

corpus.  

Our plans for future work include the evaluation of the 

proposed phrase break models on the speech rendering 

procedure of our TtS with the utilization of acoustic tests 

(pitch analysis of the synthetic waveform) as well as 

perceptual tests with subjective listening tests. 

Furthermore we work upon the extension of WCL1 

prosodic corpus with the addition of more annotated 

recording of the same and different speakers. 
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