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Abstract  Network performance evaluation has traditionally been done following the client/server model, using 
two processes to carry out the evaluation. In this paper we present a different approach. We propose an enhancement 
to the classical performance evaluation by using three processes: client, server, and a middle process that reports 
additional gauges which allow users to more accurately and rapidly detect network anomalies. For this third process 
we wrote two versions: one for PC-based routers, and the other for off-the-shelf wireless routers. The former version 
was presented in one of our previous works. In this paper, we present our experience in writing and porting our 
application to wireless routers. Additionally, we perform different experiments to validate the correctness of the 
results reported. Furthermore, we present additional experiments that illustrate another possible uses for our tool. 
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1. Introduction 
Traditional network performance tools are based on two 

processes (client/server model); therefore they report 
performance metrics for the whole path between the client 
and the server. In a network where the links have different 
bandwidths or loads, it is almost impossible to narrow and 
finally identify the link where the performance is degraded 
in the path since the performance tools based on two 
processes report results between the two end-devices. No 
in-between results are reported, which might help network 
administrators and researchers in recognizing and 
detecting problems in the network. 

In a previous work [1] we presented 3bench 1 , a 
performance evaluation tool based on three processes. The 
first version of our tool was developed for a PC platform, 
i.e., the three processes where designed to run on PCs with 
a full version of Linux, where all the required libraries are 
available, without limitations of CPU power and memory 
storage. In this work, we explain how its third process was 
ported to be supported by a wireless off-the-shelf router, 
and we also perform different tests to validate the 
correctness of the reported results over this new platform. 

Our novel benchmarking approach might help to isolate 
the exact point where performance issues are located, 
especially in WiFi networks where performance 
evaluation tools that run in access points (or wireless 
routers) were not available prior to this research. 

The rest of the paper is organized as follows. Related 
work is presented in Section 2. A short introduction to 

                                                           
1 http://sourceforge.net/projects/threebench 

3bench is done in Section 3. Section 4 relates our 
experience in porting and validating the middle process in 
a wireless router. Additional experiments are reported in 
Section 5. Finally, Section 6 concludes the paper. 

2. Related Work 
In [2], Kemerlis et al. present a study of TCP 

performance over WiFi. They perform some experiments 
in order to investigate how the throughput is divided 
among the hosts with respect of the signal strength, use of 
RTS/CTS mechanism, and traffic direction. For the 
measurement, they use tools such as ttcp2, tcpdump3, and 
tcptrace4. Another study is presented in [3] where Pacheco 
et al. discuss the results of experiments at OSI levels 4 and 
7, for TCP, UDP, and FTP experiments over 802.11a and 
802.11g networks. They measure TCP throughput, jitter, 
percentage of packet loss, and FTP transfer rate. They 
used iperf 5  to conduct their experiments, as well as 
NetStumbler 6. The best TCP throughput was found for 
802.11a, and jitter performances were found sensitive to 
AP type. The authors of [4] perform similar evaluations of 
OSI layers 4 and 7, this time comparing 802.11b/g WPA2 
Point-to-Point links. In this case, the 802.11g links 
showed a better performance for jitter and FTP throughput. 
They used iperf to conduct their experiments. 

An evaluation of the performance of network coding in 
a wireless network using experimentation is presented in 
                                                           
2 http://www.pcausa.com/utilities/pcattcp.htm 
3 http://www.tcpdump.org 
4 http://www.tcptrace.org 
5 http://sourceforge.net/projects/iperf 
6 http://www.netstumbler.com 



15 Journal of Computer Sciences and Applications  

[5]. The results show an average throughput gain of 1.2 
with network coding. For the experiments, udpgen7 was 
used to generate UDP traffic. In [6] the authors present a 
hybrid Markov-chain based model to quantify the 
throughput reduction effect in 802.11b/g mixed scenarios. 
The proposed analytical model is verified with simulations 
and field measurements under different station numbers, 
data rates, and packet sizes. For these tests, a special UDP 
traffic generator program was run in each wireless station. 
In [7] the performance of an 802.11b wireless network is 
analyzed. An anomaly is detected when some mobile 
hosts use a lower bitrate than others, degrading the 
performance of all hosts. The anomaly is analyzed 
theoretically, by means of simulations, and in testbeds 
with several performance measurements conducted with 
netperf8, tcpperf9, and udpperf10. 

A comparative study of the impact of wireless 
encryption methods over different operating systems is 
presented in [8]. The authors evaluate Windows XP, 
Windows Vista, Windows Server 2008, and Ubuntu, 
carrying out several experiments to evaluate the 
performance of TCP and UDP, using WEP-64, WEP-128, 
WPA, and WPA2. For their experiments, they used iperf. 
A similar work is offered in [9], showing an investigation 
of the impact of various encryption techniques (WEP-64, 
WEP-128, and WPA) on performance of wireless LANs 
for Windows Server 2003, Windows XP, and Windows 
Vista, once again using TCP and UDP as transport 
protocols. In this work, netperf was used as benchmarking 
tool. 

In all the studies reviewed, the experimental evaluation 
used end-to-end evaluation tools based on the well-used 
client/server model. We were not able to find any study 
involving the measurement of networking gauges at 
several points of the network path. Furthermore, a survey 
of network benchmarking tools is done in [10] where all 
the active tools (applications that inject traffic in the 
network) are based on the classical client/server model 
and the passive tools are independent processes that are 
run in promiscuous mode to capture network traffic and 
analyze it. 

3. Proposed Benchmarking Tool: 3bench 
3bench [1] is a network benchmarking tool that works 

in two modes: (1) client and server, and (2) client, server, 
and a middle process. In the first mode, we have a 
classical tool, like the ones presented in [10]. On the other 
hand, if the second mode is used, we have an additional 
agent running in an intermediate device in the path to be 
evaluated. This third process (also called middle process 
or router process) provides information about a segment of 
the path, while the server reports statistics for the whole 
path. This last mode makes easier and faster the isolation 
of possible defective links in the path. The three main 
components of our tool are briefly described next. Also, 
we depict how the network gauges are calculated, and 
provide a brief explanation of the advantages of our tool. 

                                                           
7 https://github.com/steerapi/udpgen 
8 http://www.netperf.org 
9 http://code.google.com/p/tcpperf 
10 http://ahmad.rahmati.com/files/udpperf-0.2.1.zip 

3.1. The Server 
To start the experiments the server must be run to listen 

to all the different clients’ requests. The same program is 
executed for the client and the server. When run in server 
mode, it must be indicated through the –m server option. 
The server is run in the same way whether there are two or 
three processes; it is not aware of the middle process 
presence. During its execution, the server stores a file 
containing the data of the packets from the experiment’s 
traffic (ID, timestamp, and size). With this information it 
calculates the statistics to report back to the client once the 
experiment is done. 

3.2. The Client 
It is necessary to define a configuration file for the 

client to be run. This file includes the flow definitions, 
which contain information about the destination (IPv4 or 
IPv6 address), the protocol (UDP or TCP), and the flow 
type (SPX for simplex traffic and HDX for ping-pong 
traffic); also, users can specify an arbitrary value for some 
IP header fields (TTL and ToS for IPv4, and Hop Limit 
and Traffic Class for IPv6). It is possible to define several 
flows in the same file, thus speeding users’ work. In this 
file the experiments are also defined. It is necessary to 
associate them to a previously defined flow. For the 
experiments, the required parameters are the start and 
finish time, the destination port, the interdeparture time 
between packets (CBR, Poisson, or Exponential), and the 
packet size. 

Once the client is run, it creates a configuration 
connection (using TCP) to send the experiment parameters 
to the appropriate destinations (server and middle process, 
when this latter is present); and when the start time is 
reached, experiments begin. At the end of the experiments, 
the client collects the results from all the servers (and from 
middle processes, if defined) involved, to finally display 
results via console to users. 

The middle process is optional. Since the client must be 
aware of the middle process, the client is invoked with 
arguments, giving the IP address (IPv4 or IPv6) and the 
port in which the middle process is listening. 

3.3. The Middle Process 
When the middle process is present in the experiment, 

the client sends the necessary information to it, which is 
defined in the configuration file. With this knowledge, the 
parameters to capture the experiment traffic are set. The 
captured traffic is then processed by the middle process, 
thus getting the statistics that are finally reported to the 
client at the end of the experiment to be shown to users. 

The third process requires root privileges to be executed 
to properly perform several system calls invoked by it 
(e.g., to put the NIC in promiscuous mode). 

For the wireless router’s version of the third process, 
several inconvenient where found, among them the lack of 
thread support. For these reasons, we did not develop the 
wireless router’s version of the third process in our first 
version of 3bench [1] which was limited to PC-based 
routers. However, it was one of our main interests to 
develop a version compatible with low priced off-the-shelf 
wireless routers. In Section IV, we discuss our experience 
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in porting and validating the third process in wireless 
routers with limited resources. 

3.4. Gauges Calculated 
3bench allows users to obtain several gauges including 

throughput, loss rate, jitter, and RTT (Round-Trip Time). 
All of these metrics are reported by the middle process (if 
included in the experiment), by the server, and also by the 
client (if an HDX flow is defined). In this section we 
describe how these gauges are calculated. 

3.4.1. Throughput 

The throughput is reported in bps. The server (and also 
the middle process if included in the experiment) reads the 
final statistics file and counts the total of bytes for packets 
received for this flow. Also, it takes the arrival time from 
the first and last packet. The throughput is calculated 
using Formula (1). It is worth mentioning that the 
throughput is based on the payload, i.e., UDP or TCP 
payload. 

  (1) 

3.4.2. Loss Rate 
For this gauge, the client must inform the server (and 

the middle process if there are three processes involved) 
about the total of packets sent. With this information, both 
the middle process (if present) and the server can compute 
the loss rate they observe based on the total number of 
packets sent and locally received. The percentage of lost 
packets is calculated using Formula (2). 

  (2) 

3.4.3. Jitter 
We based our jitter calculation on [11]. Assuming Si as 

the sending time for packet i, Ri as the reception time for 
packet i, and Di as its jitter, we compute the average jitter 
according to Formula (3). 

  

  (3) 

3.4.4. Ordered 
3bench reports a boolean value notifying if the received 

packets were ordered. To inform about this situation, we 
review the statistics file in every process reporting results 
(server, router, and/or client). In this file the ID for each 
packet is stored. When reporting results, the involved 
process looks if the value of these IDs does go up 
(increasing IDs) to inform about the ordering in the 
sequence evaluated. 

3.4.5. Round Trip Time 

This gauge is calculated only for HDX flows (ping-
pong traffic) and only by the client, for the complexity 
immersed in synchronizing two different computers. The 
client stores the sending time for each packet. Also, it 
keeps the information of the arriving time for each packet. 
With these data and Formula (4), the average RTT is 
obtained based on the received packets at the client’s side. 

  (4) 

3.5. Advantages of the Three Processes 
Approach 

With more traditional tools, users can set up 
experiments placing the client and the server at the ends of 
the network path to evaluate. When facing issues, such as 
packet loss, it would be complex as well as time 
consuming, to determine the exact link or device where 
the problem is located. Now with 3bench, users have 
additional information between the client and the server, 
which will facilitate tracking down the malfunction. 

Assuming a network topology such as the one shown in 
Figure 1, 3bench is able to report the gauges described in 
the previous section in three points: the client (C), the 
middle process (R), and the server (S). The report from the 
middle process corresponds to L1, whilst the report from 
the server measures the whole network path (i.e., L1  
L2). Finally, the report from the client also corresponds 
with the whole network path, but in the opposite direction 
(L2  L1). 

 

Figure 1. Three Processes Scenario 

Using a more traditional benchmarking tool (based only 
in two processes), users will only obtain results from the 
server (L1  L2 in Figure 1). In order to obtain the same 
amount of information that 3bench reports in a single 
experiment, users will be obliged to perform three 
different experiments: (1) from client to router or middle 
process –L1–, (2) from client to server – L1  L2 –, and 
(3) from server to client – L2  L1. 

With traditional benchmarking tools, users can detect 
the existence of a problem within the network path, but 
can not accurately isolate its exact location. 3bench would 
reduce the amount of time invested in identifying the 
exact location of a faulty link to half in comparison with 
traditional tools: if the problem is located in the first link 
(L1), the middle process will report it; on the other hand, 
if the problem is found in the second link (L2), the server 
will detect it. With the extra information (consisting of 
different reports from several points in the path) users will 
track down faster the exact location of the network failure. 
The reduction of the amount of time invested in the 
experiments in order to locate the specific faulty link will 
depend on the amount of links in the network path 



17 Journal of Computer Sciences and Applications  

between client and server, and the location of the middle 
process. 

4. Porting and Validating the Middle 
Process 

There were several factors involved in the porting of 
3bench’s third process to an off-the-shelf wireless router; 
we discuss some of them in this section. 

4.1. Open Firmwares 
In order to port our tool to a wireless router platform, 

we needed to install an open firmware based on Linux, 
allowing the addition and execution of our software. It is 
worth mentioning that proprietary firmwares are totally 
closed and do not allow any extension. There are several 
open firmwares that offer customizations and new features, 
usually not supported by manufacturers’ pre-installed 
software, to wireless routers. Among these firmwares we 
can mention [12,13]: 
•  DD-WRT: A free firmware based on Linux that is 

targeted for several wireless router models, 
developed under the GNU Public License (GPL). It 
has support for IPv6, RADIUS, QoS, etc. 

•  OpenWRT: Another free firmware for embedded 
systems, such as wireless routers. It supports both a 
command-line interface as well as a web-based GUI. 
It offers several services such as: DHCP, WEP, WPA, 
QoS, DDNS, Samba, etc. 

•  HyperWRT: It is based on the Linksys firmware and 
is mainly targeted to offer a wider range of 
functionalities while maintaining similarities with the 
original firmware. 

•  FreeWRT: It is a fork of OpenWRT that arises 
because of communication problems among the 
OpenWRT community. Its purpose is to offer a 
firmware that meets most requirements of a 
commercial environment. Additional software might 
be installed via ipkg. 

•  Tomato: It is a derivative of HyperWRT with a Linux 
kernel. It includes an AJAX-based GUI and several 
features such as QoS, customizable firewall, DDNS, etc. 

Most of these firmwares have several versions that were 
ported to different wireless router models. There are 
reduced versions that only offer limited functionalities, 
which are intended for wireless routers with fewer 
capabilities (2 MB to 4 MB of flash memory). Due to 
storage restrictions, users’ interactions are limited to 
Telnet or SSH (and in some case also a web-based GUI). 
Nonetheless, there are other wireless routers that provide 
more storage capacity (8 MB, 16 MB, and 32 MB of flash 
memory). For these routers we propose installing one of 
the available firmwares, and develop a version of the 
3bench’s middle process. 

Among the available open firmware, DD-WRT and 
OpenWRT have a greater support from the community. 
Between these two, OpenWRT was the selected firmware, 
because of the following reasons: 
•  OpenWRT offers a reduced image with minimal 

components, where users have to add additional 
packages which allows an optimal customization for 
the work environment; while DD-WRT provides 

several versions (mini, micro, and mega) already 
preconfigured with preinstalled packages, narrowing 
users choices. 

•  While DD-WRT seems a better choice for final users, 
OpenWRT is more developer-oriented, with many 
applications available in repositories that ease the 
setting up of a work environment. 

•  To validate our development, we use a WAN 
emulator called NetEm [14,15]. NetEm is available 
in OpenWRT repositories, hence with a simple 
command, we could install it in the wireless router. 
However, we could not find it in DD-WRT 
repositories. Despite our greatest efforts, we could 
not install it via other mechanisms in DD-WRT. 

4.2. Wireless Router Selected 
Most of the commercial wireless routers have little 

resources. It is still very common to find these devices 
with limited flash (2 MB or 4 MB) and small RAM (4 MB 
or 8 MB). Some other recent commercial wireless routers 
have more storage capacities but are still not supported by 
community firmware such as OpenWRT or DD-WRT. 
Since the storage limitation was the most critical point for 
our third process, we decided to use an ASUS WL-500W 
wireless router, which consists of a BCM3302 v0.6 264 
MHz CPU, 8 MB of flash, 32 MB of RAM, and a wireless 
802.11 b/g/n adapter with 3 external dipole antennas and a 
Broadcom BCM4704 chipset. This wireless router is 
supported by OpenWRT and has a reasonable amount of 
memory for an affordable cost. Therefore, we were able to 
arrange the executable files, as well as some data 
generated during the experiments to calculate final 
statistics, within the file system. We installed OpenWRT 
Attitude Adjustment 12.09-rc1 in our wireless router. 

4.3. Cross Compiler 
Once installed OpenWRT (Attitude Adjustment) in our 

router, we proceeded to perform some preliminary tests to 
verify the execution of our code. The first obstacle was 
not finding a C compiler that could be executed on the 
wireless router. This situation forced us to compile the 
code on a workstation and transfer the binary file to the 
wireless router. Since our workstations have an Intel 
architecture, and the wireless router has a MIPS 
architecture, we used a cross compiler. Therefore, we 
downloaded the file OpenWRT-SDK-brcm47xx-for-
Linux-i686-gcc-4.3.3+CS_uClibc-0.9.30.1.tar.bz2 from 
OpenWRT web site, which contains a functional C cross 
compiler for our wireless router. 

4.4. Queueing Library 
In the middle process, packets are queued with iptables 

(or ip6tables) and delivered to our application. All this is 
achieved with the help of a system library. 

Unlike our previous version of the third process (the 
one for PC-based routers), where we used netfilter_queue, 
for this version of our middle process (the one adapted for 
wireless routers) we used libipq, a predecessor version of 
netfilter_queue. We were forced to use this older version 
of the library because of compatibility issues. 
Unfortunately, libipq supports only one queue, thus 
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restricting the number of flows that can go simultaneously 
through the middle process to one. 

4.5. Limitations 
We performed experiments to evaluate the new version 

of 3bench’s third process (the one adapted to run over a 
wireless router with OpenWRT). We noticed that even 
though we could reach the maximum throughput using 
two processes, when using three processes we had to limit 
the packet generator to about 7 Mbps, since higher data 
rates incurred in overloading the netlink buffers of the 
router, thus killing our application. 

4.6. Unbricking Wireless Routers 
During the updating of the firmware of a wireless router, 

there is always a risk of bricking it. Bricking a router 
refers to a failure that has rendered the router useless, thus 
becoming a brick. It is common to brick a wireless router 
when upgrading its firmware, but it is also possible to do 
it with a wrong configuration or manipulation once the 
firmware is up and running. 

We encountered such a problem several times during 
our development process. There are several possibilities to 
revert the damage, such as using a special cable (JTAG), 
or performing a hard reset and flashing the router again 
via TFTP. We used the latter option, having been able to 
recover full functionality of the device. 

4.7. Validating the Wireless Router Version 
of the Middle Process 

We conducted several experiments to validate our 
middle process for wireless routers. The idea was to show 
that our tool does not introduce a significant processing 
overhead in wireless routers and that the results reported 
by 3bench are correct. It is worth remembering that home 
wireless routers are cheap devices with a low computation 
power. Our experiments include measuring RTT, loss rate, 
and throughput. All the experiments were repeated 5 to 10 
times to get consistent measurements. The average 
obtained for each test is presented as the result. The 
duration of each experiment was one minute. In all of our 
experiments, we used UDP as the transport protocol. 
Expected values were configured with NetEm [14], which 
was set up in the client and wireless router interfaces. 

In the case of the experiments measuring delay (delay 
experiments), we started doing tests measuring the RTT 
without introducing any modification to the network 
parameters with NetEm. Then, we obtained the RTT once 
NetEm was configured to add the desired delay. Finally, 
we did the subtraction of these two values, obtaining the 
experimental delay. 

For our testbed we used PCs with an Intel Core 2 Duo 
E6750 (2.66 GHz) processor, 4 GB of RAM, an Intel PCI 
Ethernet adapters (Intel PRO/100 S), a Belkin PCI 
802.11a/b/g adapter with an Atheros AR5006XS chipset, 
and a 250 GB hard disk. We installed Debian 6.0.8 
(Squeeze) in the PCs. 

4.7.1. Using Ethernet Links 
The testbed used in these experiments is shown in 

Figure 2. We performed experiments to evaluate the 
Ethernet links of the wireless router. Therefore, we used 

one of its Fast Ethernet interfaces (LAN interface of the 
wireless router) to connect the client and its WAN 
interface to connect the server. 

 

Figure 2. Testbed for Experiments over Ethernet Scenario 

Results for delay experiments are presented in Figure 3 
(IPv4) and Figure 4 (IPv6). For each figure, we have five 
experiments (E1, ..., E5). Each experiment consists of two 
bars. The first bar is the configured delay with NetEm. 
The second bar is the delay reported by the experiments. 
We can see that reported values are similar to the expected 
ones showing that the overhead introduced by the middle 
process to the wireless router is negligible. For IPv4, in all 
5 experiments, the difference between the expected value 
and the reported result was under 1%, while for IPv6 the 
difference was under 2%, except for E1, with a difference 
of 11%. 

 

Figure 3. Delay Experiments – Ethernet – IPv4 

 

Figure 4. Delay Experiments – Ethernet – IPv6 

Figure 5 presents the results for the loss rate 
experiments using IPv4, while Figure 6 reflects the results 
for IPv6. For both figures, we have 10 experiments (E1, ..., 
E10). For each experiment, the first bar represents the loss 
rate configured with NetEm in the client. The second bar 
is the loss rate reported by our middle process, which 
should be as close as possible to the first bar. The third bar 
is the combined loss rate in the client and wireless router, 
i.e., the total loss rate in the path. The fourth bar is the loss 
rate reported by the server, which should be as close as 
possible to the third bar. For experiment E1, we 
configured (5%, 5%) with NetEm, i.e., a loss rate of 5% in 
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the client and 5% in the wireless router, which leads to a 
cumulative packet loss of 9% at the server level. For the 
other experiments, we chose: E2=(5%, 20%), E3=(10%, 
5%), E4=(10%, 15%), E5=(10%, 30%), E6=(20%, 10%), 
E7=(20%, 20%), E8=(20%, 30%), E9=(30%, 10%), and 
E10=(30%, 30%). In both cases we can see that the values 
obtained are analogous to the expected, the difference 
between the expected values and the ones reported by our 
tool (both for the wireless router and the server) was less 
than 1%. These results validate that the middle process is 
running correctly and reporting the expected values. 

 

Figure 5. Loss Rate Experiments – Ethernet – IPv4 

 

Figure 6. Loss Rate Experiments – Ethernet – IPv6 

 
Figure 7. Throughput Experiments – Ethernet – IPv4 

Results for throughput experiments for IPv4 are 
depicted in Figure 7, and for IPv6 in Figure 8. Here, we 
have 5 experiments (E1, ..., E5) and the four bars 
representing the throughputs (1) configured in the client, 
(2) reported by the middle process, (3) configured in the 
wireless router, and (4) reported by the server, 
respectively. For both protocols, results are similar, 
reporting values close to the ones configured with NetEm 
along the path. For IPv4, the differences were between 3% 
and 4%, while for IPv6 they were a little higher, with a 
maximum difference of 5% among the expected values 

and the ones reported by 3bench. Once more, these results 
validate that our middle process is reporting the correct 
results. 

 
Figure 8. Throughput Experiments – Ethernet – IPv6 

4.7.2. Using Hybrid Links 
The previous experiments were repeated, this time 

using the testbed depicted in Figure 9. We connected the 
client to the Fast Ethernet interface of the wireless router 
(WAN) and the server to the WiFi 802.11g interface of the 
wireless router (WLAN), thus creating an hybrid scenario. 
This will cause a bottleneck in the WiFi link that will be 
easily detected by our benchmark. The idea behind this 
scenario is to demonstrate how helpful 3bench would be 
in detecting bottlenecks in a network path, injecting traffic 
in a wider bandwidth (wired link) and forwarding it to a 
narrower bandwidth (wireless link). 

 

Figure 9. Testbed for Experiments over Hybrid Scenario 

Figure 10 shows the results for the delay experiments 
using IPv4, while the results for IPv6 are shown in Figure 
11. In the case of IPv4, we can see a difference of 2% for 
E1, 4% for E2, and under 0.5% for E3, E4, and E5. On the 
other hand, for IPv6, we observe a difference of 11% for 
E1, and under 1% for the rest of the experiments, E2, E3, 
E4, and E5. The only noticeable difference is reported in 
E1 for IPv6. We can say that this bigger difference is due 
to the small amount of delay involved in this test (5ms). 
These results show once again that the overload 
introduced by our tool is small and does not affect 
significantly the final results. 

 

Figure 10. Delay Experiments – Hybrid – IPv4 
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Figure 11. Delay Experiments – Hybrid – IPv6 

Results for loss rate experiments are depicted in Figure 
12 (IPv4) and in Figure 13 (IPv6). We can see that for 
some experiments, the values of the fourth column are 
slightly higher than those of the third column. This might 
be caused by the untrusting nature of the wireless links. In 
all cases, the difference between the expected values and 
the results reported by our tool are under 1%. 

 

Figure 12. Loss Rate Experiments – Hybrid – IPv4 

 

Figure 13. Loss Rate Experiments – Hybrid – IPv6 

 

Figure 14. Throughput Experiments – Hybrid – IPv4 

We can see the results for the throughput experiments 
for IPv4 in Figure 14 and for IPv6 in Figure 15. In both 
cases, 3bench reported values similar to the expected, at 
the wireless router as well as at the server (differences of 
3% for IPv4 and 4% for IPv6), validating one more time 
the adequate behavior of 3bench. 

 

Figure 15. Throughput Experiments – Hybrid – IPv6 

5. Additional Experiments 
The purpose of these experiments is to demonstrate that 

3bench can also be used to determine the saturation point 
of an intermediate device. To achieve this, we connected 
three PCs through our wireless router, each one running a 
3bench server and a 3bench client. In the configuration 
file of each client two flows were defined (one toward 
each of the other two servers of the testbed), thus 
generating a total of six simultaneous flows. We defined 
different bitrates using the traffic engine embedded in 
3bench. We used different packets sizes following the 
recommendations in [16]. 

In a first scenario, we used our ASUS wireless router, 
connecting the three PCs via wired LAN interfaces. The 
testbed is shown in Figure 16. We performed tests with 
IPv4 and IPv6 as network protocols. 

 

Figure 16. Testbed – Saturation Experiments - Wired 

Results obtained for IPv4 are depicted in Figure 17. We 
can notice how the saturation throughput reached changes 
according to the packet size (512, 1024, and 1400 bytes 
for UDP payload). In all cases, we can see the upper limit 
of 100 Mbps imposed by the middle device (a total of 300 
Mbps when three PCs are connected). Similar results are 
shown in Figure 18 for IPv6. As the packet size increases, 
the saturation throughput reached is higher. For smaller 
UDP payload, the total throughput reported by our tool is 
lower, and this is due to the fact that we need a bigger 
number of packets to reach the bitrate, therefore 
increasing the forwarding effort of the intermediate device. 
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Also, for smaller UDP payload, the overhead of the layer 
2 and IP headers is becoming important comparing to the 
UDP payload, reducing the UDP throughput. 

 

Figure 17. Saturation Experiments – Wired – IPv4 

 

Figure 18. Saturation Experiments – Wired – IPv6 

For the second scenario, we repeated these experiments, 
this time using 802.11g connections. To achieve this, we 
used the same ASUS wireless router utilized in previous 
experiments. The testbed is shown in Figure 19. We 
changed the configured bitrates in this test, as the 
theoretical upper limit of the bandwidth is lower. 

 

Figure 19. Testbed – Saturation Experiments – Wireless 

Results for this experiment are depicted in Figure 20 
(IPv4) and Figure 21 (IPv6). We can notice that the 
highest throughput reached is around 8 Mbps. We assume 
that a higher throughput (closer to the theoretical limit) 
could not be reached because of the presence of 
simultaneous transmissions (three PCs and a wireless 
router sharing the same channel), occasioning collisions 
and consequently downgrading the network performance. 
Additionally, we can appreciate how the same behavior is 
repeated as with a wired environment: the network 
performance improves for bigger packets. This kind of 
experiments allows users to determine the ideal amount of 
clients for the network, so the performance is not damaged. 
In contrast with the wired scenario, we can notice that 

after a certain value of the bitrate, the performance 
downgrades on the wireless scenario due to the numerous 
collisions that happen in the shared medium. 

 

Figure 20. Saturation Experiments – Wireless – IPv4 

 

Figure 21. Saturation Experiments – Wireless – IPv6 

6. Conclusions and Future Work 
In this work we explained the porting procedure for 

3bench’s third process, in order to execute it on an off-the-
shelf wireless router. We performed several experiments 
to validate the correctness and accuracy of the results 
reported by our new version of 3bench. To achieve this we 
used NetEm, a WAN emulator that permits the alteration 
of traffic flows by specifying the required network 
parameters and we compared the values set with the 
results reported by 3bench. In all cases, the expected 
values were pretty similar to the experimental values, thus 
confirming the correctness of our tool. Additionally, we 
confirmed how the presence of a third process can help 
network administrators and researchers to accomplish 
network diagnostics in a shorter time. Finally, we 
demonstrated supplementary applications for our tool, in 
the way of determining the saturation point of middle 
devices on a network.  

For future work, we plan to use 3bench to carry out 
network performance evaluations where we will analyze 
different network security protocols such as WEP, WPA, 
and WPA2. We also intend to compare the network 
performance of different wireless routers. 
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