
Journal of Computer Sciences and Applications, 2014, Vol. 2, No. 2, 14-22
Available online at http://pubs.sciepub.com/jcsa/2/2/1
© Science and Education Publishing
DOI:10.12691/jcsa-2-2-1

Network Performance Evaluation Based on Three
Processes

Karima Velásquez1, Eric Gamess2,*

1Laboratorio de Comunicación y Redes, Central University of Venezuela, Caracas, Venezuela
2Escuela de Computación, Central University of Venezuela, Caracas, Venezuela

*Corresponding author: eric.gamess@ciens.ucv.ve

Received April 17, 2014; Revised May 20, 2014; Accepted May 20, 2014

Abstract Network performance evaluation has traditionally been done following the client/server model, using
two processes to carry out the evaluation. In this paper we present a different approach. We propose an enhancement
to the classical performance evaluation by using three processes: client, server, and a middle process that reports
additional gauges which allow users to more accurately and rapidly detect network anomalies. For this third process
we wrote two versions: one for PC-based routers, and the other for off-the-shelf wireless routers. The former version
was presented in one of our previous works. In this paper, we present our experience in writing and porting our
application to wireless routers. Additionally, we perform different experiments to validate the correctness of the
results reported. Furthermore, we present additional experiments that illustrate another possible uses for our tool.

Keywords: benchmarking tools, performance evaluation, network monitoring

Cite This Article: Karima Velásquez, and Eric Gamess, “Network Performance Evaluation Based on Three
Processes.” Journal of Computer Sciences and Applications, vol. 2, no. 2 (2014): 14-22. doi: 10.12691/jcsa-2-2-1.

1. Introduction
Traditional network performance tools are based on two

processes (client/server model); therefore they report
performance metrics for the whole path between the client
and the server. In a network where the links have different
bandwidths or loads, it is almost impossible to narrow and
finally identify the link where the performance is degraded
in the path since the performance tools based on two
processes report results between the two end-devices. No
in-between results are reported, which might help network
administrators and researchers in recognizing and
detecting problems in the network.

In a previous work [1] we presented 3bench 1 , a
performance evaluation tool based on three processes. The
first version of our tool was developed for a PC platform,
i.e., the three processes where designed to run on PCs with
a full version of Linux, where all the required libraries are
available, without limitations of CPU power and memory
storage. In this work, we explain how its third process was
ported to be supported by a wireless off-the-shelf router,
and we also perform different tests to validate the
correctness of the reported results over this new platform.

Our novel benchmarking approach might help to isolate
the exact point where performance issues are located,
especially in WiFi networks where performance
evaluation tools that run in access points (or wireless
routers) were not available prior to this research.

The rest of the paper is organized as follows. Related
work is presented in Section 2. A short introduction to

1 http://sourceforge.net/projects/threebench

3bench is done in Section 3. Section 4 relates our
experience in porting and validating the middle process in
a wireless router. Additional experiments are reported in
Section 5. Finally, Section 6 concludes the paper.

2. Related Work
In [2], Kemerlis et al. present a study of TCP

performance over WiFi. They perform some experiments
in order to investigate how the throughput is divided
among the hosts with respect of the signal strength, use of
RTS/CTS mechanism, and traffic direction. For the
measurement, they use tools such as ttcp2, tcpdump3, and
tcptrace4. Another study is presented in [3] where Pacheco
et al. discuss the results of experiments at OSI levels 4 and
7, for TCP, UDP, and FTP experiments over 802.11a and
802.11g networks. They measure TCP throughput, jitter,
percentage of packet loss, and FTP transfer rate. They
used iperf 5 to conduct their experiments, as well as
NetStumbler 6. The best TCP throughput was found for
802.11a, and jitter performances were found sensitive to
AP type. The authors of [4] perform similar evaluations of
OSI layers 4 and 7, this time comparing 802.11b/g WPA2
Point-to-Point links. In this case, the 802.11g links
showed a better performance for jitter and FTP throughput.
They used iperf to conduct their experiments.

An evaluation of the performance of network coding in
a wireless network using experimentation is presented in

2 http://www.pcausa.com/utilities/pcattcp.htm
3 http://www.tcpdump.org
4 http://www.tcptrace.org
5 http://sourceforge.net/projects/iperf
6 http://www.netstumbler.com

15 Journal of Computer Sciences and Applications

[5]. The results show an average throughput gain of 1.2
with network coding. For the experiments, udpgen7 was
used to generate UDP traffic. In [6] the authors present a
hybrid Markov-chain based model to quantify the
throughput reduction effect in 802.11b/g mixed scenarios.
The proposed analytical model is verified with simulations
and field measurements under different station numbers,
data rates, and packet sizes. For these tests, a special UDP
traffic generator program was run in each wireless station.
In [7] the performance of an 802.11b wireless network is
analyzed. An anomaly is detected when some mobile
hosts use a lower bitrate than others, degrading the
performance of all hosts. The anomaly is analyzed
theoretically, by means of simulations, and in testbeds
with several performance measurements conducted with
netperf8, tcpperf9, and udpperf10.

A comparative study of the impact of wireless
encryption methods over different operating systems is
presented in [8]. The authors evaluate Windows XP,
Windows Vista, Windows Server 2008, and Ubuntu,
carrying out several experiments to evaluate the
performance of TCP and UDP, using WEP-64, WEP-128,
WPA, and WPA2. For their experiments, they used iperf.
A similar work is offered in [9], showing an investigation
of the impact of various encryption techniques (WEP-64,
WEP-128, and WPA) on performance of wireless LANs
for Windows Server 2003, Windows XP, and Windows
Vista, once again using TCP and UDP as transport
protocols. In this work, netperf was used as benchmarking
tool.

In all the studies reviewed, the experimental evaluation
used end-to-end evaluation tools based on the well-used
client/server model. We were not able to find any study
involving the measurement of networking gauges at
several points of the network path. Furthermore, a survey
of network benchmarking tools is done in [10] where all
the active tools (applications that inject traffic in the
network) are based on the classical client/server model
and the passive tools are independent processes that are
run in promiscuous mode to capture network traffic and
analyze it.

3. Proposed Benchmarking Tool: 3bench
3bench [1] is a network benchmarking tool that works

in two modes: (1) client and server, and (2) client, server,
and a middle process. In the first mode, we have a
classical tool, like the ones presented in [10]. On the other
hand, if the second mode is used, we have an additional
agent running in an intermediate device in the path to be
evaluated. This third process (also called middle process
or router process) provides information about a segment of
the path, while the server reports statistics for the whole
path. This last mode makes easier and faster the isolation
of possible defective links in the path. The three main
components of our tool are briefly described next. Also,
we depict how the network gauges are calculated, and
provide a brief explanation of the advantages of our tool.

7 https://github.com/steerapi/udpgen
8 http://www.netperf.org
9 http://code.google.com/p/tcpperf
10 http://ahmad.rahmati.com/files/udpperf-0.2.1.zip

3.1. The Server
To start the experiments the server must be run to listen

to all the different clients’ requests. The same program is
executed for the client and the server. When run in server
mode, it must be indicated through the –m server option.
The server is run in the same way whether there are two or
three processes; it is not aware of the middle process
presence. During its execution, the server stores a file
containing the data of the packets from the experiment’s
traffic (ID, timestamp, and size). With this information it
calculates the statistics to report back to the client once the
experiment is done.

3.2. The Client
It is necessary to define a configuration file for the

client to be run. This file includes the flow definitions,
which contain information about the destination (IPv4 or
IPv6 address), the protocol (UDP or TCP), and the flow
type (SPX for simplex traffic and HDX for ping-pong
traffic); also, users can specify an arbitrary value for some
IP header fields (TTL and ToS for IPv4, and Hop Limit
and Traffic Class for IPv6). It is possible to define several
flows in the same file, thus speeding users’ work. In this
file the experiments are also defined. It is necessary to
associate them to a previously defined flow. For the
experiments, the required parameters are the start and
finish time, the destination port, the interdeparture time
between packets (CBR, Poisson, or Exponential), and the
packet size.

Once the client is run, it creates a configuration
connection (using TCP) to send the experiment parameters
to the appropriate destinations (server and middle process,
when this latter is present); and when the start time is
reached, experiments begin. At the end of the experiments,
the client collects the results from all the servers (and from
middle processes, if defined) involved, to finally display
results via console to users.

The middle process is optional. Since the client must be
aware of the middle process, the client is invoked with
arguments, giving the IP address (IPv4 or IPv6) and the
port in which the middle process is listening.

3.3. The Middle Process
When the middle process is present in the experiment,

the client sends the necessary information to it, which is
defined in the configuration file. With this knowledge, the
parameters to capture the experiment traffic are set. The
captured traffic is then processed by the middle process,
thus getting the statistics that are finally reported to the
client at the end of the experiment to be shown to users.

The third process requires root privileges to be executed
to properly perform several system calls invoked by it
(e.g., to put the NIC in promiscuous mode).

For the wireless router’s version of the third process,
several inconvenient where found, among them the lack of
thread support. For these reasons, we did not develop the
wireless router’s version of the third process in our first
version of 3bench [1] which was limited to PC-based
routers. However, it was one of our main interests to
develop a version compatible with low priced off-the-shelf
wireless routers. In Section IV, we discuss our experience

 Journal of Computer Sciences and Applications 16

in porting and validating the third process in wireless
routers with limited resources.

3.4. Gauges Calculated
3bench allows users to obtain several gauges including

throughput, loss rate, jitter, and RTT (Round-Trip Time).
All of these metrics are reported by the middle process (if
included in the experiment), by the server, and also by the
client (if an HDX flow is defined). In this section we
describe how these gauges are calculated.

3.4.1. Throughput

The throughput is reported in bps. The server (and also
the middle process if included in the experiment) reads the
final statistics file and counts the total of bytes for packets
received for this flow. Also, it takes the arrival time from
the first and last packet. The throughput is calculated
using Formula (1). It is worth mentioning that the
throughput is based on the payload, i.e., UDP or TCP
payload.

 (1)

3.4.2. Loss Rate
For this gauge, the client must inform the server (and

the middle process if there are three processes involved)
about the total of packets sent. With this information, both
the middle process (if present) and the server can compute
the loss rate they observe based on the total number of
packets sent and locally received. The percentage of lost
packets is calculated using Formula (2).

 (2)

3.4.3. Jitter
We based our jitter calculation on [11]. Assuming Si as

the sending time for packet i, Ri as the reception time for
packet i, and Di as its jitter, we compute the average jitter
according to Formula (3).

 (3)

3.4.4. Ordered
3bench reports a boolean value notifying if the received

packets were ordered. To inform about this situation, we
review the statistics file in every process reporting results
(server, router, and/or client). In this file the ID for each
packet is stored. When reporting results, the involved
process looks if the value of these IDs does go up
(increasing IDs) to inform about the ordering in the
sequence evaluated.

3.4.5. Round Trip Time

This gauge is calculated only for HDX flows (ping-
pong traffic) and only by the client, for the complexity
immersed in synchronizing two different computers. The
client stores the sending time for each packet. Also, it
keeps the information of the arriving time for each packet.
With these data and Formula (4), the average RTT is
obtained based on the received packets at the client’s side.

 (4)

3.5. Advantages of the Three Processes
Approach

With more traditional tools, users can set up
experiments placing the client and the server at the ends of
the network path to evaluate. When facing issues, such as
packet loss, it would be complex as well as time
consuming, to determine the exact link or device where
the problem is located. Now with 3bench, users have
additional information between the client and the server,
which will facilitate tracking down the malfunction.

Assuming a network topology such as the one shown in
Figure 1, 3bench is able to report the gauges described in
the previous section in three points: the client (C), the
middle process (R), and the server (S). The report from the
middle process corresponds to L1, whilst the report from
the server measures the whole network path (i.e., L1
L2). Finally, the report from the client also corresponds
with the whole network path, but in the opposite direction
(L2 L1).

Figure 1. Three Processes Scenario

Using a more traditional benchmarking tool (based only
in two processes), users will only obtain results from the
server (L1 L2 in Figure 1). In order to obtain the same
amount of information that 3bench reports in a single
experiment, users will be obliged to perform three
different experiments: (1) from client to router or middle
process –L1–, (2) from client to server – L1 L2 –, and
(3) from server to client – L2 L1.

With traditional benchmarking tools, users can detect
the existence of a problem within the network path, but
can not accurately isolate its exact location. 3bench would
reduce the amount of time invested in identifying the
exact location of a faulty link to half in comparison with
traditional tools: if the problem is located in the first link
(L1), the middle process will report it; on the other hand,
if the problem is found in the second link (L2), the server
will detect it. With the extra information (consisting of
different reports from several points in the path) users will
track down faster the exact location of the network failure.
The reduction of the amount of time invested in the
experiments in order to locate the specific faulty link will
depend on the amount of links in the network path

17 Journal of Computer Sciences and Applications

between client and server, and the location of the middle
process.

4. Porting and Validating the Middle
Process

There were several factors involved in the porting of
3bench’s third process to an off-the-shelf wireless router;
we discuss some of them in this section.

4.1. Open Firmwares
In order to port our tool to a wireless router platform,

we needed to install an open firmware based on Linux,
allowing the addition and execution of our software. It is
worth mentioning that proprietary firmwares are totally
closed and do not allow any extension. There are several
open firmwares that offer customizations and new features,
usually not supported by manufacturers’ pre-installed
software, to wireless routers. Among these firmwares we
can mention [12,13]:
• DD-WRT: A free firmware based on Linux that is

targeted for several wireless router models,
developed under the GNU Public License (GPL). It
has support for IPv6, RADIUS, QoS, etc.

• OpenWRT: Another free firmware for embedded
systems, such as wireless routers. It supports both a
command-line interface as well as a web-based GUI.
It offers several services such as: DHCP, WEP, WPA,
QoS, DDNS, Samba, etc.

• HyperWRT: It is based on the Linksys firmware and
is mainly targeted to offer a wider range of
functionalities while maintaining similarities with the
original firmware.

• FreeWRT: It is a fork of OpenWRT that arises
because of communication problems among the
OpenWRT community. Its purpose is to offer a
firmware that meets most requirements of a
commercial environment. Additional software might
be installed via ipkg.

• Tomato: It is a derivative of HyperWRT with a Linux
kernel. It includes an AJAX-based GUI and several
features such as QoS, customizable firewall, DDNS, etc.

Most of these firmwares have several versions that were
ported to different wireless router models. There are
reduced versions that only offer limited functionalities,
which are intended for wireless routers with fewer
capabilities (2 MB to 4 MB of flash memory). Due to
storage restrictions, users’ interactions are limited to
Telnet or SSH (and in some case also a web-based GUI).
Nonetheless, there are other wireless routers that provide
more storage capacity (8 MB, 16 MB, and 32 MB of flash
memory). For these routers we propose installing one of
the available firmwares, and develop a version of the
3bench’s middle process.

Among the available open firmware, DD-WRT and
OpenWRT have a greater support from the community.
Between these two, OpenWRT was the selected firmware,
because of the following reasons:
• OpenWRT offers a reduced image with minimal

components, where users have to add additional
packages which allows an optimal customization for
the work environment; while DD-WRT provides

several versions (mini, micro, and mega) already
preconfigured with preinstalled packages, narrowing
users choices.

• While DD-WRT seems a better choice for final users,
OpenWRT is more developer-oriented, with many
applications available in repositories that ease the
setting up of a work environment.

• To validate our development, we use a WAN
emulator called NetEm [14,15]. NetEm is available
in OpenWRT repositories, hence with a simple
command, we could install it in the wireless router.
However, we could not find it in DD-WRT
repositories. Despite our greatest efforts, we could
not install it via other mechanisms in DD-WRT.

4.2. Wireless Router Selected
Most of the commercial wireless routers have little

resources. It is still very common to find these devices
with limited flash (2 MB or 4 MB) and small RAM (4 MB
or 8 MB). Some other recent commercial wireless routers
have more storage capacities but are still not supported by
community firmware such as OpenWRT or DD-WRT.
Since the storage limitation was the most critical point for
our third process, we decided to use an ASUS WL-500W
wireless router, which consists of a BCM3302 v0.6 264
MHz CPU, 8 MB of flash, 32 MB of RAM, and a wireless
802.11 b/g/n adapter with 3 external dipole antennas and a
Broadcom BCM4704 chipset. This wireless router is
supported by OpenWRT and has a reasonable amount of
memory for an affordable cost. Therefore, we were able to
arrange the executable files, as well as some data
generated during the experiments to calculate final
statistics, within the file system. We installed OpenWRT
Attitude Adjustment 12.09-rc1 in our wireless router.

4.3. Cross Compiler
Once installed OpenWRT (Attitude Adjustment) in our

router, we proceeded to perform some preliminary tests to
verify the execution of our code. The first obstacle was
not finding a C compiler that could be executed on the
wireless router. This situation forced us to compile the
code on a workstation and transfer the binary file to the
wireless router. Since our workstations have an Intel
architecture, and the wireless router has a MIPS
architecture, we used a cross compiler. Therefore, we
downloaded the file OpenWRT-SDK-brcm47xx-for-
Linux-i686-gcc-4.3.3+CS_uClibc-0.9.30.1.tar.bz2 from
OpenWRT web site, which contains a functional C cross
compiler for our wireless router.

4.4. Queueing Library
In the middle process, packets are queued with iptables

(or ip6tables) and delivered to our application. All this is
achieved with the help of a system library.

Unlike our previous version of the third process (the
one for PC-based routers), where we used netfilter_queue,
for this version of our middle process (the one adapted for
wireless routers) we used libipq, a predecessor version of
netfilter_queue. We were forced to use this older version
of the library because of compatibility issues.
Unfortunately, libipq supports only one queue, thus

 Journal of Computer Sciences and Applications 18

restricting the number of flows that can go simultaneously
through the middle process to one.

4.5. Limitations
We performed experiments to evaluate the new version

of 3bench’s third process (the one adapted to run over a
wireless router with OpenWRT). We noticed that even
though we could reach the maximum throughput using
two processes, when using three processes we had to limit
the packet generator to about 7 Mbps, since higher data
rates incurred in overloading the netlink buffers of the
router, thus killing our application.

4.6. Unbricking Wireless Routers
During the updating of the firmware of a wireless router,

there is always a risk of bricking it. Bricking a router
refers to a failure that has rendered the router useless, thus
becoming a brick. It is common to brick a wireless router
when upgrading its firmware, but it is also possible to do
it with a wrong configuration or manipulation once the
firmware is up and running.

We encountered such a problem several times during
our development process. There are several possibilities to
revert the damage, such as using a special cable (JTAG),
or performing a hard reset and flashing the router again
via TFTP. We used the latter option, having been able to
recover full functionality of the device.

4.7. Validating the Wireless Router Version
of the Middle Process

We conducted several experiments to validate our
middle process for wireless routers. The idea was to show
that our tool does not introduce a significant processing
overhead in wireless routers and that the results reported
by 3bench are correct. It is worth remembering that home
wireless routers are cheap devices with a low computation
power. Our experiments include measuring RTT, loss rate,
and throughput. All the experiments were repeated 5 to 10
times to get consistent measurements. The average
obtained for each test is presented as the result. The
duration of each experiment was one minute. In all of our
experiments, we used UDP as the transport protocol.
Expected values were configured with NetEm [14], which
was set up in the client and wireless router interfaces.

In the case of the experiments measuring delay (delay
experiments), we started doing tests measuring the RTT
without introducing any modification to the network
parameters with NetEm. Then, we obtained the RTT once
NetEm was configured to add the desired delay. Finally,
we did the subtraction of these two values, obtaining the
experimental delay.

For our testbed we used PCs with an Intel Core 2 Duo
E6750 (2.66 GHz) processor, 4 GB of RAM, an Intel PCI
Ethernet adapters (Intel PRO/100 S), a Belkin PCI
802.11a/b/g adapter with an Atheros AR5006XS chipset,
and a 250 GB hard disk. We installed Debian 6.0.8
(Squeeze) in the PCs.

4.7.1. Using Ethernet Links
The testbed used in these experiments is shown in

Figure 2. We performed experiments to evaluate the
Ethernet links of the wireless router. Therefore, we used

one of its Fast Ethernet interfaces (LAN interface of the
wireless router) to connect the client and its WAN
interface to connect the server.

Figure 2. Testbed for Experiments over Ethernet Scenario

Results for delay experiments are presented in Figure 3
(IPv4) and Figure 4 (IPv6). For each figure, we have five
experiments (E1, ..., E5). Each experiment consists of two
bars. The first bar is the configured delay with NetEm.
The second bar is the delay reported by the experiments.
We can see that reported values are similar to the expected
ones showing that the overhead introduced by the middle
process to the wireless router is negligible. For IPv4, in all
5 experiments, the difference between the expected value
and the reported result was under 1%, while for IPv6 the
difference was under 2%, except for E1, with a difference
of 11%.

Figure 3. Delay Experiments – Ethernet – IPv4

Figure 4. Delay Experiments – Ethernet – IPv6

Figure 5 presents the results for the loss rate
experiments using IPv4, while Figure 6 reflects the results
for IPv6. For both figures, we have 10 experiments (E1, ...,
E10). For each experiment, the first bar represents the loss
rate configured with NetEm in the client. The second bar
is the loss rate reported by our middle process, which
should be as close as possible to the first bar. The third bar
is the combined loss rate in the client and wireless router,
i.e., the total loss rate in the path. The fourth bar is the loss
rate reported by the server, which should be as close as
possible to the third bar. For experiment E1, we
configured (5%, 5%) with NetEm, i.e., a loss rate of 5% in

19 Journal of Computer Sciences and Applications

the client and 5% in the wireless router, which leads to a
cumulative packet loss of 9% at the server level. For the
other experiments, we chose: E2=(5%, 20%), E3=(10%,
5%), E4=(10%, 15%), E5=(10%, 30%), E6=(20%, 10%),
E7=(20%, 20%), E8=(20%, 30%), E9=(30%, 10%), and
E10=(30%, 30%). In both cases we can see that the values
obtained are analogous to the expected, the difference
between the expected values and the ones reported by our
tool (both for the wireless router and the server) was less
than 1%. These results validate that the middle process is
running correctly and reporting the expected values.

Figure 5. Loss Rate Experiments – Ethernet – IPv4

Figure 6. Loss Rate Experiments – Ethernet – IPv6

Figure 7. Throughput Experiments – Ethernet – IPv4

Results for throughput experiments for IPv4 are
depicted in Figure 7, and for IPv6 in Figure 8. Here, we
have 5 experiments (E1, ..., E5) and the four bars
representing the throughputs (1) configured in the client,
(2) reported by the middle process, (3) configured in the
wireless router, and (4) reported by the server,
respectively. For both protocols, results are similar,
reporting values close to the ones configured with NetEm
along the path. For IPv4, the differences were between 3%
and 4%, while for IPv6 they were a little higher, with a
maximum difference of 5% among the expected values

and the ones reported by 3bench. Once more, these results
validate that our middle process is reporting the correct
results.

Figure 8. Throughput Experiments – Ethernet – IPv6

4.7.2. Using Hybrid Links
The previous experiments were repeated, this time

using the testbed depicted in Figure 9. We connected the
client to the Fast Ethernet interface of the wireless router
(WAN) and the server to the WiFi 802.11g interface of the
wireless router (WLAN), thus creating an hybrid scenario.
This will cause a bottleneck in the WiFi link that will be
easily detected by our benchmark. The idea behind this
scenario is to demonstrate how helpful 3bench would be
in detecting bottlenecks in a network path, injecting traffic
in a wider bandwidth (wired link) and forwarding it to a
narrower bandwidth (wireless link).

Figure 9. Testbed for Experiments over Hybrid Scenario

Figure 10 shows the results for the delay experiments
using IPv4, while the results for IPv6 are shown in Figure
11. In the case of IPv4, we can see a difference of 2% for
E1, 4% for E2, and under 0.5% for E3, E4, and E5. On the
other hand, for IPv6, we observe a difference of 11% for
E1, and under 1% for the rest of the experiments, E2, E3,
E4, and E5. The only noticeable difference is reported in
E1 for IPv6. We can say that this bigger difference is due
to the small amount of delay involved in this test (5ms).
These results show once again that the overload
introduced by our tool is small and does not affect
significantly the final results.

Figure 10. Delay Experiments – Hybrid – IPv4

 Journal of Computer Sciences and Applications 20

Figure 11. Delay Experiments – Hybrid – IPv6

Results for loss rate experiments are depicted in Figure
12 (IPv4) and in Figure 13 (IPv6). We can see that for
some experiments, the values of the fourth column are
slightly higher than those of the third column. This might
be caused by the untrusting nature of the wireless links. In
all cases, the difference between the expected values and
the results reported by our tool are under 1%.

Figure 12. Loss Rate Experiments – Hybrid – IPv4

Figure 13. Loss Rate Experiments – Hybrid – IPv6

Figure 14. Throughput Experiments – Hybrid – IPv4

We can see the results for the throughput experiments
for IPv4 in Figure 14 and for IPv6 in Figure 15. In both
cases, 3bench reported values similar to the expected, at
the wireless router as well as at the server (differences of
3% for IPv4 and 4% for IPv6), validating one more time
the adequate behavior of 3bench.

Figure 15. Throughput Experiments – Hybrid – IPv6

5. Additional Experiments
The purpose of these experiments is to demonstrate that

3bench can also be used to determine the saturation point
of an intermediate device. To achieve this, we connected
three PCs through our wireless router, each one running a
3bench server and a 3bench client. In the configuration
file of each client two flows were defined (one toward
each of the other two servers of the testbed), thus
generating a total of six simultaneous flows. We defined
different bitrates using the traffic engine embedded in
3bench. We used different packets sizes following the
recommendations in [16].

In a first scenario, we used our ASUS wireless router,
connecting the three PCs via wired LAN interfaces. The
testbed is shown in Figure 16. We performed tests with
IPv4 and IPv6 as network protocols.

Figure 16. Testbed – Saturation Experiments - Wired

Results obtained for IPv4 are depicted in Figure 17. We
can notice how the saturation throughput reached changes
according to the packet size (512, 1024, and 1400 bytes
for UDP payload). In all cases, we can see the upper limit
of 100 Mbps imposed by the middle device (a total of 300
Mbps when three PCs are connected). Similar results are
shown in Figure 18 for IPv6. As the packet size increases,
the saturation throughput reached is higher. For smaller
UDP payload, the total throughput reported by our tool is
lower, and this is due to the fact that we need a bigger
number of packets to reach the bitrate, therefore
increasing the forwarding effort of the intermediate device.

21 Journal of Computer Sciences and Applications

Also, for smaller UDP payload, the overhead of the layer
2 and IP headers is becoming important comparing to the
UDP payload, reducing the UDP throughput.

Figure 17. Saturation Experiments – Wired – IPv4

Figure 18. Saturation Experiments – Wired – IPv6

For the second scenario, we repeated these experiments,
this time using 802.11g connections. To achieve this, we
used the same ASUS wireless router utilized in previous
experiments. The testbed is shown in Figure 19. We
changed the configured bitrates in this test, as the
theoretical upper limit of the bandwidth is lower.

Figure 19. Testbed – Saturation Experiments – Wireless

Results for this experiment are depicted in Figure 20
(IPv4) and Figure 21 (IPv6). We can notice that the
highest throughput reached is around 8 Mbps. We assume
that a higher throughput (closer to the theoretical limit)
could not be reached because of the presence of
simultaneous transmissions (three PCs and a wireless
router sharing the same channel), occasioning collisions
and consequently downgrading the network performance.
Additionally, we can appreciate how the same behavior is
repeated as with a wired environment: the network
performance improves for bigger packets. This kind of
experiments allows users to determine the ideal amount of
clients for the network, so the performance is not damaged.
In contrast with the wired scenario, we can notice that

after a certain value of the bitrate, the performance
downgrades on the wireless scenario due to the numerous
collisions that happen in the shared medium.

Figure 20. Saturation Experiments – Wireless – IPv4

Figure 21. Saturation Experiments – Wireless – IPv6

6. Conclusions and Future Work
In this work we explained the porting procedure for

3bench’s third process, in order to execute it on an off-the-
shelf wireless router. We performed several experiments
to validate the correctness and accuracy of the results
reported by our new version of 3bench. To achieve this we
used NetEm, a WAN emulator that permits the alteration
of traffic flows by specifying the required network
parameters and we compared the values set with the
results reported by 3bench. In all cases, the expected
values were pretty similar to the experimental values, thus
confirming the correctness of our tool. Additionally, we
confirmed how the presence of a third process can help
network administrators and researchers to accomplish
network diagnostics in a shorter time. Finally, we
demonstrated supplementary applications for our tool, in
the way of determining the saturation point of middle
devices on a network.

For future work, we plan to use 3bench to carry out
network performance evaluations where we will analyze
different network security protocols such as WEP, WPA,
and WPA2. We also intend to compare the network
performance of different wireless routers.

References
[1] K. Velásquez and E. Gamess. “3bench: A Benchmarking Tool

based on Three Processes”. Journal of Convergence Information
Technology. Volume 8, Number 14. pp. 55-68. September 2013.

 Journal of Computer Sciences and Applications 22

[2] V. Kemerlis, E. Stefanis, G. Xylomenos, and G. Polyzos.
“Throughput Unfairness in TCP over WiFi”. In Proceedings of the
3rd Annual Conference on Wireless On Demand Network
Systems and Services (WONS 2006). Les Ménuires, France.
January 2006.

[3] J. Pacheco, H. Veiga, C. Ribeiro, and A. Reis. “Comparative
Performance Evaluation of Wi-Fi IEEE 802.11 A,G WEP PTP
Links”. In Proceedings of the World Congress on Engineering
2012 Vol II (WCE 2012). London, U.K. July 2012.

[4] J. Pacheco de Carvalho, H. Veiga, N. Marques, C. Ribeiro
Pacheco, and A. Reis. “Laboratory Performance of Wi-Fi IEEE
802.11 B,G WPA2 Point-to-Point Links: a Case Study”. In
Proceedings of the World Congress on Engineering 2011 Vol II
(WCE 2011). London, U.K. July 2011.

[5] I. Qazi and P. Gandhi. “Performance Evaluation of Wireless
Network Coding under Practical Settings”. Department of
Computer Science University of Pittsburgh. Technical Report TR-
07-150. Pittsburgh, USA, May 2007.

[6] S. Wang, Y. Chen, T. Lee, and A. Helmy. “Performance
Evaluations for Hybrid IEEE 802.11b and 802.11g Wireless
Networks”. In Proceedings of the 24th IEEE International
Performance, Computing, and Communications Conference
(IPCCC 2005). New York, USA. April 2005.

[7] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda.
“Performance Anomaly of 802.11b”. In Proceedings of the 22nd
Annual Joint Conference of the IEEE Computer and
Communications (INFOCOM 2003). Grenoble, France. April
2003.

[8] S. Narayan, T, Feng, X. Xu, and S. Ardham. “Impact of Wireless
IEEE802.11n Encryption Methods on Network Performance of
Operating Systems”. In Proceedings of the Second International
Conference on Emerging Trends in Engineering and Technology
(ICETET-09). Nagpur, India. December 2009.

[9] S. Kolahi, S. Narayan, D. Nguyen, Y. Sunarto, and P. Mani. “The
Impact of Wireless LAN Security on Performance of Different
Windows Operating Systems”. In Proceedings of the Symposium
on Computers and Communications (ISCC 2008). Marrakech,
Morocco. July 2008.

[10] K. Velásquez and E. Gamess. “A Survey of Network Benchmark
Tools”. Machine Learning and System Engineering. pp. 465-480.
Springer. 2010.

[11] S. Avallone, A. Botta, A. Dainotti, W. de Donato, and A. Pescapé.
“D-ITG V. 2.6.1d Manual”. May 2008.

[12] P. Asadoorian and L. Pesce. Linksys WRT54G Ultimate Hacking.
Syngress. July 2007.

[13] C. Hallinan. Embedded Linux Primer: A Practical Real-World
Approach. 2nd ed. Prentice Hall. November 2010.

[14] S. Hemminger. “Network Emulation with NetEm”. In Proceedings
of Australia's 6th National Linux Conference. Canberra, Australia.
April 2005.

[15] K. Velásquez and E. Gamess. “A Comparative Analysis of WAN
Emulators”. In Proceedings of Latin American Networking
Conference (LANC’2012). Medellin, Colombia. October 2012.

[16] S. Bradner and J. McQuaid. Benchmarking Methodology for
Network Interconnect Devices. RFC 2544. March 1999.

