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Abstract  The nested structured queries as well as nested iteration as operator in both the logical and physical 
query algebra have been sometimes neglected in research. Interesting issues arise if multiple invocations of the same 
nested computation affect each other, e.g., the first invocation warms up the I/O buffer for subsequent ones. Other 
interesting issues arise if different nested computations compete for resources, e.g., I/O buffer or memory for sort 
and hash operations within inner queries. Nested computations are very important in practice, both because queries 
are authored using nested structured queries and because nested iteration based on index-to-index navigation often is 
the best execution plan. Therefore, nested computations could be a very fruitful research topic, both execution and 
optimization, and could probably also benefit from more dynamic and adaptive techniques than those in use today. 
While most resource issues have relatively little impact on optimal plan choices (even if they affect the ranking 
among different plans of fairly similar costs), one issue that is crucial in practice but usually ignored in academic 
research is the effect of buffer hits and faults in complex query plans. However, a conceptual model may be needed 
of nested queries that are substantially simpler, e.g., based on algebra expressions with a table of parameter values. 
In this paper it is aimed to find location of local minima of particle, random velocities of particles considering the relation 
schemes. The query plans related to relation schemes may be represented as particles. The query is optimized at 
compile time by that the complete query execution plans may be generated. The function evaluation of particles 
represented in terms of query plans in the relation schemes is planned to be done by considering random population 
of continuous values and velocities. 

Keywords: query, plan, OLAP, OLTP, tuple, swarm, Query Scrambling 

Cite This Article: Sambit Kumar Mishra, Srikanta Pattnaik, and Dulu Patnaik, “Evaluating Query Execution 
Plans by Implementing Join Operators using Particle Swarm Optimization.” Journal of Computer Sciences and 
Applications, vol. 2, no. 2 (2014): 31-35. doi: 10.12691/jcsa-2-2-3. 

1. Introduction 
Query processing can be divided into query 

optimization and query execution. For queries with 10, 20, 
or 100 operators, this clear-cut distinction which is no 
longer applicable. If each operator’s selectivity is 
consistently underestimated by a mere 10%, the error after 
10 operators is a factor of 2.8; the error after 20 operators 
is a factor of 8.2; and after 100 operators, it is a factor of 
37,649. Beyond a level of query complexity somewhere 
between 10 and 20 operators, selectivity and cost 
estimates are more guesses than predictions, and plan 
choices are more gambles than strategic decisions. Startup 
time-dynamic query evaluation plans are dynamic plans 
implementing decisions typically made at compile time 
that are delayed until the start of a query’s evaluation. 
Run-time-dynamic query evaluation plans are plans that 
make decisions between alternative, potentially optimal, 
algorithms, operator ordering, and plan shapes based upon 
additional knowledge obtained while evaluating the plan. 

In this case Classical query processing, based on the 
distinction between compile-time and run-time, may be 
used. The query is optimized at compile time, thus 
resulting in a complete query execution plan (QEP). At 
runtime, the query engine executes the query, following 
strictly the decisions of the query optimizer. This 
approach has proven to be effective in centralized systems 
where the compiler can make good decisions. However, 
the execution of an integration query plan produced with 
this approach can result in poor performance because the 
mediator has limited knowledge of the behavior of the 
remote sources. Query Scrambling may be termed as a 
reactive approach to query execution; it reacts to data 
delivery problems by on-the-fly rescheduling of query 
operators and restructuring of the query execution plan. 
Query Scrambling is aimed at improving the response 
time for the entire query, and may actually slow down the 
return of some initial results in order to minimize the time 
required to produce the remaining portion of a query 
answer once all necessary data has been obtained from all 
of the remote sources. 
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The most exciting recent development in database 
query processing is usually the commercial use of 
materialized views. In a way, materialized views take the 
concept of early binding a step further than compile-time 
optimization. The benefit can be tremendous, as many 
online analytical processing (OLAP) tools and 
applications demonstrate every day with sub-second 
response times even for very large volumes of detail data. 
In effect, when materialized views work really effectively, 
complex query processing is reduced to index navigation 
very similar to online transaction processing (OLTP) 
processing, except for differences in the update load. 
Fancy techniques for large queries, e.g., shared scans, 
bitmap indexes, hash joins, and parallel query processing 
might once again be of little importance, just as they were 
when databases were used only for business operations 
(OLTP), not data analysis and business intelligence. The 
transaction processing has many benefits. It allows sharing 
of computer resources among many users. It shifts the 
time of job processing to when the computing resources 
are less busy. The online transaction processing facilitates 
and manages transaction oriented applications, typically 
for data entry and retrieval transaction processing. It has 
two key benefits, simplicity and efficiency. 

There are many issues with respect to building 
redundant indexes on materialized views as well as to 
coherency, updates, invalidation, re-computation, 
incremental updates, etc.; probably the simplest policy 
(certainly from the perspectives of the application 
developer and the end user) is to treat materializations of 
view results similar to indexes, meaning instant updates 
within the original transaction, or even simply to index 
views in addition to tables, supporting both non-clustered 
and clustered indexes (the latter contain all columns in the 
table or the view). 

In this paper a complementary approach using a non-
blocking join operator is presented which is based on two 
fundamental principles: 

1. It is optimized for producing results incrementally as 
they become available. When used in a fully pipelined 
query plan, answer tuples can be returned to the user as 
soon as they are produced. The early delivery of initial 
answers can provide tremendous improvements in the 
responsiveness observed by the users. 

2. It allows progress to be made even when one or more 
sources experience delays. There are two reasons for this. 
First, the join requires less memory, which allows for 
bushier plans. Thus, some parts of a query plan can 
continue while others are stalled waiting for input. Second, 
by employing background processing on previously 
received tuples from both of its inputs, the Join operator 
can produce results even when both inputs are stalled 
simultaneously. 

2. Review of Literature 
Kristina Zelenay et.al [1] have discussed Deterministic 

algorithm, which is also known as exhaustive search 
dynamic programming algorithm, produces optimal left-
deep processing trees with the big disadvantage of having 
an exponential running time. This means that for queries 
with more than 10-15 joins, the running time and space 
complexity explodes. 

S. R. Madden et.al [2] have explained the query 
evaluation techniques to identify opportunities for sharing 
between operators, and to modify parts of the query plan 
to exploit these opportunities. The predicate indexing 
multiple query optimization technique shares work among 
them by indexing the selection predicates of the operators. 
For each incoming stream tuple this index is probed. It 
returns all satisfied predicates at a much lower cost than 
the naive strategy of evaluating each selection predicate 
individually one-by-one. 

R. Avnur et.al [3] have elaborated in their paper that 
while query optimizers do a remarkably good job of 
estimating both the cardinality and cost of most queries, 
many assumptions underlie their mathematical models, 
such as the currency of the database statistics and the 
independence of predicates. Outdated statistics or invalid 
assumptions may cause significant estimation errors in the 
cardinality, and hence the cost of a plan, causing sub-
optimal plans to be chosen. One proposed solution is to 
continually reoptimize the plan as each row, but this 
incurs impractically large re-optimization costs. 

P.G. Selinger et.al [4] have discussed in their paper that 
most modern query optimizers determine the best plan for 
executing a given query by mathematically modeling the 
execution cost for each of many alternative query 
evaluation plans and choosing the one with the cheapest 
estimated cost. The execution cost is largely dependent 
upon the number of rows that may be processed by each 
operator in the query evaluation plan in the query.  

As explained by Ganguly, S et.al [5], the general 
problem of the query optimization can be expressed as 
follows.  

Assume a query q, a space of the execution plans E, and 
a cost function cost (q) associated to the execution of p єE. 
To find the execution plan calculating q such as the cost (q) 
is minimum an optimizer may be decomposed into three 
elements a search space, corresponding to the virtual set of 
all possible execution plans corresponding to a given 
query, a search strategy generating an optimal (or close to 
the optimal) execution plan and a cost model. 

J. Chen et.al [6] have discussed in their paper that the 
plans of multiple queries are grouped together if they have 
common expression signatures, i.e., their plans have 
common syntactic characteristics. They have considered 
non-boolean queries and apart from syntactic similarities 
they have calculated the communication cost by 
computing and merging different plans. 

A. Halevy et.al [7] have focused on query translation 
through mappings between the sources. They used data-
level mapping between heterogeneous sources. It is 
understood that a distributed query may be involved with 
multiple sources, instead of a single source each time.  

F. Neven et.al [8] have proposed a system to monitor 
various categories of data. The setting of the queries is 
centralized one where every source communicates only 
with a central source. Furthermore, it might not the 
amount of data transfer that is minimized but the total 
number of different database accesses. 

J. Bleiholder et.al [9] have focused on single queries 
where the largest set of answers, following alternate paths 
through the graph connecting the sources, has to be 
computed at the lowest cost. 

G. M. Thomas et.al. [10] have proposed an algorithm 
that combines greedy heuristics with dynamic 
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programming in order to reduce the running time and 
space complexity of dynamic programming, while still 
producing good plans. The algorithm is capable of optimizing 
a query using dynamic programming by enumerating over 
the minimal number of connected subsets of the given join 
graph. 

T. Neumann et.al [11] have discussed in their paper that 
while considering the join between two relations in a 
distributed setting there are a number of situations that 
must be taken into consideration when determining the 
most efficient means of carrying out the join. Situations 
involving possible shipping of complete relations between 
sites have been focused. They have aimed to reduce the 
network useage when performing cross site joins include 
the use of Semi-joins and Bloomjoins. 

AlinDeutsch et.al [12] have introduced in their paper 
about tuple generating & equality generating dependencies 
and discussed embedded dependencies with disjunction 
and non equalities. 

G. Tan et.al [13] have discussed sub-problems in join 
enumeration which depend on all preceding levels, 
whereas sub-problems. It is seen that the dynamic 
programming depend on only a fixed number of preceding 
levels. Thus, existing parallel dynamic programming 
algorithms cannot be readily applied to dynamic 
programming query optimization to achieve linear 
speedup. 

G. Moerkotte et.al [14] have emphasized upon 
reduction of compilation times for large data warehouse 
OLAP queries which are typically star-shaped. OLTP 
queries are not our focus, since they can be optimized very 
fast. They have conducted experimental study on a real 
DB2 query workload and verified that compilation time is 
dominated by the number of join re-orderings.  

W.-S. Han et el [15] have proposed the first framework 
to parallelize the size-based serial enumeration in a multi-
core architecture. Extensive work has been done on 
heuristic or randomized query optimization to reduce 
query optimization time for large join queries. 

N. W. Paton et.al [16] have discussed in their paper 
about dependency-aware parallel enumeration algorithm 
called DPEGeneric. The main thread invokes DPE-
Generic. It then invokes the subroutine Enum And Build 
Partial Order to convert a fixed number of join pairs into a 
partial order. 

3. Methods and Techniques Used 
In this case the particle swarm optimization technique 

(PSO) is used to evaluate the query execution plans and to 
implement join operators. The particle swarm 
optimization (PSO) is a robust stochastic optimization 
technique which is based on the movement and 
intelligence of swarms. PSO applies the concept of social 
interaction to problem solving. It was developed in 1995 
by James Kennedy and Russell Eberhart. It uses a number 
of agents or particles that constitute a swarm moving 
around in the search space looking for the best solution. 
Each particle is treated as a point in a N-dimensional 
space which adjusts its “flying” according to its own 
flying experience as well as the flying experience of other 
particles. Each particle keeps track of its coordinates in the 
solution space which are associated with the best solution 

(fitness) that has achieved so far by that particle. This 
value is called personal best, pbest. Another best value 
that is tracked by the PSO is the best value obtained so far 
by any particle in the neighborhood of that particle. This 
value is called gbest. The basic concept of PSO lies in 
accelerating each particle toward its pbest and the gbest 
locations, with a random weighted accelaration at each 
time step. Unlike in genetic algorithms, evolutionary 
programming and evolutionary strategies, in PSO, there is 
no selection operation. All particles in PSO are kept as 
members of the population through the course of the run. 

4. Problem Formulation 

A. Example 
Assume that P(P) and Q(Q) are two union compatible 

relations. 
The union of P(P) and Q(Q) is the set theoretic union of 

P(P) and Q(Q). The resultant relation R=PỤQ has tuples 
drawn from P and Q such that  

R={ t| tєP ỤtєQ} and max(|P|, |Q|) <=|R|<=|P|+|Q|. 
Similarly the Cartesian product of two union 

compatible relations, P and Q is nothing but the 
concatenation of tuples belonging to the two relations. 

The resultant relation R= P X Q, has tuples drawn from 
P and Q such that R={t1||t2| t1єP ∩ t2єQ}, where tuple 
rєR, and t1,t2 є r.  

The redundancies may be eliminated by decomposing 
the relation into several relations in higher normal form. 
The decomposition may be lossless if it may be recovered. 

For example, a relation R may be in Boyce-codd 
normal form if for every non trivial functional 
dependencies X->Y in R where X,Y є R, and X is a super 
key. X->Y is a violation if it is non trivial and X does not 
contain any key of R. So based on a Boyce-codd normal 
form violation X->Y, relation R may be decomposed into 
two relations, one with XỤY as its attributes and other 
with XỤ( attr(R)-X-Y) as its attributes. 

B. Algorithm 
Step 1 : The size of the swarm, i.e., popsize 

is set to 10. 
Step 2: The dimension of the problem, i.e.  

nrelations is set to 2; 
Step 3: The maximum number of iterations, 

i.e. maxquery is set to 100; 
Step 4: The number of swarm variables,  

npar=2; 
Step 5: The cognitive parameter, c1 = 1;  
Step 6: The social parameter, c2 = 4-c1;  
Step 7: nitialize the swarm and velocities and 

generate random population of 
continuous values 
par=rand(popsize,npar);  

Step 8: Generate random velocities, vel = 
rand(popsize,npar);  

Step 9: Evaluate the prime function,  
ff=par+vel/c2; 

Step 10: Calculate the population cost using  
the prime function 

Step 11: Calculate the min cost, 
minc=min(cost);  
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Step 12: Calculate the mean of the cost,  
meanc=mean(cost); 

Step 13: Initialize the global minimum for  
each particle 

Step 14: Initialize the local minimum for  
each particle 

Step 15 : Retrieve the location of local  
minima 

Step 16 : Evaluate the cost of local minima 
Step 17 : Retrieve the best particle in initial  

population 
Step 18 : Initiate the iteration 

iter = 0;  
while iter < maxquery 
iter = iter + 1; 

Step 19 : Update the velocity, vel and  
evaluate inertia weight index  
considering maxquery and  
iterations 

Step 20 : Generate random numbers,r1,r2 by  
considering the popsize and  
number of warm variables 

Step 21 : Update the particle position 
Step 22 : Evaluate the new swarm 
Step 23: Evaluate the cost of swarm 
Step 24: Update the best local position for  

each particle 
Step 25 : Update the index 
Step 26 : Evaluate the best min for the  

iterations 
Step 27: Evaluate the average cost for the  

iterations 

Table 1. Location of local minima of particle 
Relation(R1) Relation(R2) 
0.99327 0.21992 
0.054167 0.26077 
0.49369 0.77139 
0.99051 0.89836 
0.3117 0.57969 

Table 2. (Vel) Random velocities 
Relation(R1) Relation(R2) 
0.508 0.35572 
0.094959 0.38302 
0.5713 0.45707 
0.61635 0.30588 
0.70711 0.71084 

Table 3. Estimated cost of plan 
Relation (R1) Relation (R2) 
2.1559 0.55841 
0.13999 0.64921 
1.1778 1.6951 
0.40356 1.8987 
0.8591 1.3963 

Table 4. ff (Function evaluation by considering random population 
of continuous values and velocities) 
Relation(R1) Relation(R2) 
1.1626 0.33849 
0.08582 0.38844 
0.68412 0.92374 
0.3045 1.0003 
0.5474 0.81663 

 

Figure 1. Mean VS Global Mean 

 

Figure 2. Estimated cost of plan VS Actual cost of plan 

 

Figure 3. Estimated cost VS Better cost 
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5. Discussion and Future Direction 
As the area of data management for the Internet has 

gained in popularity, recent work has focused on 
effectively dealing with unpredictable, dynamic data 
volumes and transfer rates using adaptive query 
processing techniques. Important requirements of the 
Internet domain include: (1) the ability to process the web 
data as it streams in from the network, in addition to 
working on locally stored data; (2) dynamic scheduling of 
operators to adjust to I/O delays and flow rates; (3) 
sharing and re-use of data across multiple queries, where 
possible; (4) the ability to output results and later update 
them. Data may often be pre fetched and cached by the 
query processor, but the system may also have to provide 
data freshness guarantees. If the domain includes large 
numbers of similar queries being posed frequently, the 
query processor should generate query plans with a focus 
on materialization of partial results for future reuse, and it 
should make use of common sub expressions. It is 
understood that the better plans may be achieved by 
executing a set of queries by modeling the execution cost 
for each of alternative query evaluation plans and 
choosing the one with the cheapest estimated cost. The 
execution cost is largely dependent upon the number of 
rows that may be processed by each operator in the query 
evaluation plan in the query.  

6. Conclusion  
During the process of implementation, the techniques to 

evaluate query execution plans have been classified and 
compared. The opportunities offered by such techniques to 
modify a query plan have been identified. In addition, 
while implementing dynamic plans in the dynamic query 
processing environments, the systems are required to be 
classified according to the problem focused on along with 
the objectives, the nature of feedback and the frequency of 
adaptation.  

The survey reveals the inadequacy of existing 
techniques to adapt to environments where the pool of 
resources is subject to changes. In particular, the paper 
provides evidence to the need for research into dynamic 

query environment where resource availability, allocation 
and costing are not, by definition, decidable at compile 
time. 
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