
Journal of Computer Sciences and Applications, 2014, Vol. 2, No. 2, 31-35
Available online at http://pubs.sciepub.com/jcsa/2/2/3
© Science and Education Publishing
DOI:10.12691/jcsa-2-2-3

Evaluating Query Execution Plans by Implementing Join
Operators using Particle Swarm Optimization

Sambit Kumar Mishra1,*, Srikanta Pattnaik2, Dulu Patnaik3,*

1Department of Computer Sc.&Engg, Ajay Binay Institute of Technology, Cuttack, Odisha, India
2S.O.A. University, Bhubaneswar, Odisha, India

3Government College of Engineering, Bhwanipatna, Odisha, India
*Corresponding author: sambit_pr@rediffmail.com

Received September 01, 2014; Revised September 07, 2014; Accepted September 11, 2014

Abstract The nested structured queries as well as nested iteration as operator in both the logical and physical
query algebra have been sometimes neglected in research. Interesting issues arise if multiple invocations of the same
nested computation affect each other, e.g., the first invocation warms up the I/O buffer for subsequent ones. Other
interesting issues arise if different nested computations compete for resources, e.g., I/O buffer or memory for sort
and hash operations within inner queries. Nested computations are very important in practice, both because queries
are authored using nested structured queries and because nested iteration based on index-to-index navigation often is
the best execution plan. Therefore, nested computations could be a very fruitful research topic, both execution and
optimization, and could probably also benefit from more dynamic and adaptive techniques than those in use today.
While most resource issues have relatively little impact on optimal plan choices (even if they affect the ranking
among different plans of fairly similar costs), one issue that is crucial in practice but usually ignored in academic
research is the effect of buffer hits and faults in complex query plans. However, a conceptual model may be needed
of nested queries that are substantially simpler, e.g., based on algebra expressions with a table of parameter values.
In this paper it is aimed to find location of local minima of particle, random velocities of particles considering the relation
schemes. The query plans related to relation schemes may be represented as particles. The query is optimized at
compile time by that the complete query execution plans may be generated. The function evaluation of particles
represented in terms of query plans in the relation schemes is planned to be done by considering random population
of continuous values and velocities.

Keywords: query, plan, OLAP, OLTP, tuple, swarm, Query Scrambling

Cite This Article: Sambit Kumar Mishra, Srikanta Pattnaik, and Dulu Patnaik, “Evaluating Query Execution
Plans by Implementing Join Operators using Particle Swarm Optimization.” Journal of Computer Sciences and
Applications, vol. 2, no. 2 (2014): 31-35. doi: 10.12691/jcsa-2-2-3.

1. Introduction
Query processing can be divided into query

optimization and query execution. For queries with 10, 20,
or 100 operators, this clear-cut distinction which is no
longer applicable. If each operator’s selectivity is
consistently underestimated by a mere 10%, the error after
10 operators is a factor of 2.8; the error after 20 operators
is a factor of 8.2; and after 100 operators, it is a factor of
37,649. Beyond a level of query complexity somewhere
between 10 and 20 operators, selectivity and cost
estimates are more guesses than predictions, and plan
choices are more gambles than strategic decisions. Startup
time-dynamic query evaluation plans are dynamic plans
implementing decisions typically made at compile time
that are delayed until the start of a query’s evaluation.
Run-time-dynamic query evaluation plans are plans that
make decisions between alternative, potentially optimal,
algorithms, operator ordering, and plan shapes based upon
additional knowledge obtained while evaluating the plan.

In this case Classical query processing, based on the
distinction between compile-time and run-time, may be
used. The query is optimized at compile time, thus
resulting in a complete query execution plan (QEP). At
runtime, the query engine executes the query, following
strictly the decisions of the query optimizer. This
approach has proven to be effective in centralized systems
where the compiler can make good decisions. However,
the execution of an integration query plan produced with
this approach can result in poor performance because the
mediator has limited knowledge of the behavior of the
remote sources. Query Scrambling may be termed as a
reactive approach to query execution; it reacts to data
delivery problems by on-the-fly rescheduling of query
operators and restructuring of the query execution plan.
Query Scrambling is aimed at improving the response
time for the entire query, and may actually slow down the
return of some initial results in order to minimize the time
required to produce the remaining portion of a query
answer once all necessary data has been obtained from all
of the remote sources.

 Journal of Computer Sciences and Applications 32

The most exciting recent development in database
query processing is usually the commercial use of
materialized views. In a way, materialized views take the
concept of early binding a step further than compile-time
optimization. The benefit can be tremendous, as many
online analytical processing (OLAP) tools and
applications demonstrate every day with sub-second
response times even for very large volumes of detail data.
In effect, when materialized views work really effectively,
complex query processing is reduced to index navigation
very similar to online transaction processing (OLTP)
processing, except for differences in the update load.
Fancy techniques for large queries, e.g., shared scans,
bitmap indexes, hash joins, and parallel query processing
might once again be of little importance, just as they were
when databases were used only for business operations
(OLTP), not data analysis and business intelligence. The
transaction processing has many benefits. It allows sharing
of computer resources among many users. It shifts the
time of job processing to when the computing resources
are less busy. The online transaction processing facilitates
and manages transaction oriented applications, typically
for data entry and retrieval transaction processing. It has
two key benefits, simplicity and efficiency.

There are many issues with respect to building
redundant indexes on materialized views as well as to
coherency, updates, invalidation, re-computation,
incremental updates, etc.; probably the simplest policy
(certainly from the perspectives of the application
developer and the end user) is to treat materializations of
view results similar to indexes, meaning instant updates
within the original transaction, or even simply to index
views in addition to tables, supporting both non-clustered
and clustered indexes (the latter contain all columns in the
table or the view).

In this paper a complementary approach using a non-
blocking join operator is presented which is based on two
fundamental principles:

1. It is optimized for producing results incrementally as
they become available. When used in a fully pipelined
query plan, answer tuples can be returned to the user as
soon as they are produced. The early delivery of initial
answers can provide tremendous improvements in the
responsiveness observed by the users.

2. It allows progress to be made even when one or more
sources experience delays. There are two reasons for this.
First, the join requires less memory, which allows for
bushier plans. Thus, some parts of a query plan can
continue while others are stalled waiting for input. Second,
by employing background processing on previously
received tuples from both of its inputs, the Join operator
can produce results even when both inputs are stalled
simultaneously.

2. Review of Literature
Kristina Zelenay et.al [1] have discussed Deterministic

algorithm, which is also known as exhaustive search
dynamic programming algorithm, produces optimal left-
deep processing trees with the big disadvantage of having
an exponential running time. This means that for queries
with more than 10-15 joins, the running time and space
complexity explodes.

S. R. Madden et.al [2] have explained the query
evaluation techniques to identify opportunities for sharing
between operators, and to modify parts of the query plan
to exploit these opportunities. The predicate indexing
multiple query optimization technique shares work among
them by indexing the selection predicates of the operators.
For each incoming stream tuple this index is probed. It
returns all satisfied predicates at a much lower cost than
the naive strategy of evaluating each selection predicate
individually one-by-one.

R. Avnur et.al [3] have elaborated in their paper that
while query optimizers do a remarkably good job of
estimating both the cardinality and cost of most queries,
many assumptions underlie their mathematical models,
such as the currency of the database statistics and the
independence of predicates. Outdated statistics or invalid
assumptions may cause significant estimation errors in the
cardinality, and hence the cost of a plan, causing sub-
optimal plans to be chosen. One proposed solution is to
continually reoptimize the plan as each row, but this
incurs impractically large re-optimization costs.

P.G. Selinger et.al [4] have discussed in their paper that
most modern query optimizers determine the best plan for
executing a given query by mathematically modeling the
execution cost for each of many alternative query
evaluation plans and choosing the one with the cheapest
estimated cost. The execution cost is largely dependent
upon the number of rows that may be processed by each
operator in the query evaluation plan in the query.

As explained by Ganguly, S et.al [5], the general
problem of the query optimization can be expressed as
follows.

Assume a query q, a space of the execution plans E, and
a cost function cost (q) associated to the execution of p єE.
To find the execution plan calculating q such as the cost (q)
is minimum an optimizer may be decomposed into three
elements a search space, corresponding to the virtual set of
all possible execution plans corresponding to a given
query, a search strategy generating an optimal (or close to
the optimal) execution plan and a cost model.

J. Chen et.al [6] have discussed in their paper that the
plans of multiple queries are grouped together if they have
common expression signatures, i.e., their plans have
common syntactic characteristics. They have considered
non-boolean queries and apart from syntactic similarities
they have calculated the communication cost by
computing and merging different plans.

A. Halevy et.al [7] have focused on query translation
through mappings between the sources. They used data-
level mapping between heterogeneous sources. It is
understood that a distributed query may be involved with
multiple sources, instead of a single source each time.

F. Neven et.al [8] have proposed a system to monitor
various categories of data. The setting of the queries is
centralized one where every source communicates only
with a central source. Furthermore, it might not the
amount of data transfer that is minimized but the total
number of different database accesses.

J. Bleiholder et.al [9] have focused on single queries
where the largest set of answers, following alternate paths
through the graph connecting the sources, has to be
computed at the lowest cost.

G. M. Thomas et.al. [10] have proposed an algorithm
that combines greedy heuristics with dynamic

33 Journal of Computer Sciences and Applications

programming in order to reduce the running time and
space complexity of dynamic programming, while still
producing good plans. The algorithm is capable of optimizing
a query using dynamic programming by enumerating over
the minimal number of connected subsets of the given join
graph.

T. Neumann et.al [11] have discussed in their paper that
while considering the join between two relations in a
distributed setting there are a number of situations that
must be taken into consideration when determining the
most efficient means of carrying out the join. Situations
involving possible shipping of complete relations between
sites have been focused. They have aimed to reduce the
network useage when performing cross site joins include
the use of Semi-joins and Bloomjoins.

AlinDeutsch et.al [12] have introduced in their paper
about tuple generating & equality generating dependencies
and discussed embedded dependencies with disjunction
and non equalities.

G. Tan et.al [13] have discussed sub-problems in join
enumeration which depend on all preceding levels,
whereas sub-problems. It is seen that the dynamic
programming depend on only a fixed number of preceding
levels. Thus, existing parallel dynamic programming
algorithms cannot be readily applied to dynamic
programming query optimization to achieve linear
speedup.

G. Moerkotte et.al [14] have emphasized upon
reduction of compilation times for large data warehouse
OLAP queries which are typically star-shaped. OLTP
queries are not our focus, since they can be optimized very
fast. They have conducted experimental study on a real
DB2 query workload and verified that compilation time is
dominated by the number of join re-orderings.

W.-S. Han et el [15] have proposed the first framework
to parallelize the size-based serial enumeration in a multi-
core architecture. Extensive work has been done on
heuristic or randomized query optimization to reduce
query optimization time for large join queries.

N. W. Paton et.al [16] have discussed in their paper
about dependency-aware parallel enumeration algorithm
called DPEGeneric. The main thread invokes DPE-
Generic. It then invokes the subroutine Enum And Build
Partial Order to convert a fixed number of join pairs into a
partial order.

3. Methods and Techniques Used
In this case the particle swarm optimization technique

(PSO) is used to evaluate the query execution plans and to
implement join operators. The particle swarm
optimization (PSO) is a robust stochastic optimization
technique which is based on the movement and
intelligence of swarms. PSO applies the concept of social
interaction to problem solving. It was developed in 1995
by James Kennedy and Russell Eberhart. It uses a number
of agents or particles that constitute a swarm moving
around in the search space looking for the best solution.
Each particle is treated as a point in a N-dimensional
space which adjusts its “flying” according to its own
flying experience as well as the flying experience of other
particles. Each particle keeps track of its coordinates in the
solution space which are associated with the best solution

(fitness) that has achieved so far by that particle. This
value is called personal best, pbest. Another best value
that is tracked by the PSO is the best value obtained so far
by any particle in the neighborhood of that particle. This
value is called gbest. The basic concept of PSO lies in
accelerating each particle toward its pbest and the gbest
locations, with a random weighted accelaration at each
time step. Unlike in genetic algorithms, evolutionary
programming and evolutionary strategies, in PSO, there is
no selection operation. All particles in PSO are kept as
members of the population through the course of the run.

4. Problem Formulation

A. Example
Assume that P(P) and Q(Q) are two union compatible

relations.
The union of P(P) and Q(Q) is the set theoretic union of

P(P) and Q(Q). The resultant relation R=PỤQ has tuples
drawn from P and Q such that

R={ t| tєP ỤtєQ} and max(|P|, |Q|) <=|R|<=|P|+|Q|.
Similarly the Cartesian product of two union

compatible relations, P and Q is nothing but the
concatenation of tuples belonging to the two relations.

The resultant relation R= P X Q, has tuples drawn from
P and Q such that R={t1||t2| t1єP ∩ t2єQ}, where tuple
rєR, and t1,t2 є r.

The redundancies may be eliminated by decomposing
the relation into several relations in higher normal form.
The decomposition may be lossless if it may be recovered.

For example, a relation R may be in Boyce-codd
normal form if for every non trivial functional
dependencies X->Y in R where X,Y є R, and X is a super
key. X->Y is a violation if it is non trivial and X does not
contain any key of R. So based on a Boyce-codd normal
form violation X->Y, relation R may be decomposed into
two relations, one with XỤY as its attributes and other
with XỤ(attr(R)-X-Y) as its attributes.

B. Algorithm
Step 1 : The size of the swarm, i.e., popsize

is set to 10.
Step 2: The dimension of the problem, i.e.

nrelations is set to 2;
Step 3: The maximum number of iterations,

i.e. maxquery is set to 100;
Step 4: The number of swarm variables,

npar=2;
Step 5: The cognitive parameter, c1 = 1;
Step 6: The social parameter, c2 = 4-c1;
Step 7: nitialize the swarm and velocities and

generate random population of
continuous values
par=rand(popsize,npar);

Step 8: Generate random velocities, vel =
rand(popsize,npar);

Step 9: Evaluate the prime function,
ff=par+vel/c2;

Step 10: Calculate the population cost using
the prime function

Step 11: Calculate the min cost,
minc=min(cost);

 Journal of Computer Sciences and Applications 34

Step 12: Calculate the mean of the cost,
meanc=mean(cost);

Step 13: Initialize the global minimum for
each particle

Step 14: Initialize the local minimum for
each particle

Step 15 : Retrieve the location of local
minima

Step 16 : Evaluate the cost of local minima
Step 17 : Retrieve the best particle in initial

population
Step 18 : Initiate the iteration

iter = 0;
while iter < maxquery
iter = iter + 1;

Step 19 : Update the velocity, vel and
evaluate inertia weight index
considering maxquery and
iterations

Step 20 : Generate random numbers,r1,r2 by
considering the popsize and
number of warm variables

Step 21 : Update the particle position
Step 22 : Evaluate the new swarm
Step 23: Evaluate the cost of swarm
Step 24: Update the best local position for

each particle
Step 25 : Update the index
Step 26 : Evaluate the best min for the

iterations
Step 27: Evaluate the average cost for the

iterations

Table 1. Location of local minima of particle
Relation(R1) Relation(R2)
0.99327 0.21992
0.054167 0.26077
0.49369 0.77139
0.99051 0.89836
0.3117 0.57969

Table 2. (Vel) Random velocities
Relation(R1) Relation(R2)
0.508 0.35572
0.094959 0.38302
0.5713 0.45707
0.61635 0.30588
0.70711 0.71084

Table 3. Estimated cost of plan
Relation (R1) Relation (R2)
2.1559 0.55841
0.13999 0.64921
1.1778 1.6951
0.40356 1.8987
0.8591 1.3963

Table 4. ff (Function evaluation by considering random population
of continuous values and velocities)
Relation(R1) Relation(R2)
1.1626 0.33849
0.08582 0.38844
0.68412 0.92374
0.3045 1.0003
0.5474 0.81663

Figure 1. Mean VS Global Mean

Figure 2. Estimated cost of plan VS Actual cost of plan

Figure 3. Estimated cost VS Better cost

35 Journal of Computer Sciences and Applications

5. Discussion and Future Direction
As the area of data management for the Internet has

gained in popularity, recent work has focused on
effectively dealing with unpredictable, dynamic data
volumes and transfer rates using adaptive query
processing techniques. Important requirements of the
Internet domain include: (1) the ability to process the web
data as it streams in from the network, in addition to
working on locally stored data; (2) dynamic scheduling of
operators to adjust to I/O delays and flow rates; (3)
sharing and re-use of data across multiple queries, where
possible; (4) the ability to output results and later update
them. Data may often be pre fetched and cached by the
query processor, but the system may also have to provide
data freshness guarantees. If the domain includes large
numbers of similar queries being posed frequently, the
query processor should generate query plans with a focus
on materialization of partial results for future reuse, and it
should make use of common sub expressions. It is
understood that the better plans may be achieved by
executing a set of queries by modeling the execution cost
for each of alternative query evaluation plans and
choosing the one with the cheapest estimated cost. The
execution cost is largely dependent upon the number of
rows that may be processed by each operator in the query
evaluation plan in the query.

6. Conclusion
During the process of implementation, the techniques to

evaluate query execution plans have been classified and
compared. The opportunities offered by such techniques to
modify a query plan have been identified. In addition,
while implementing dynamic plans in the dynamic query
processing environments, the systems are required to be
classified according to the problem focused on along with
the objectives, the nature of feedback and the frequency of
adaptation.

The survey reveals the inadequacy of existing
techniques to adapt to environments where the pool of
resources is subject to changes. In particular, the paper
provides evidence to the need for research into dynamic

query environment where resource availability, allocation
and costing are not, by definition, decidable at compile
time.

References
[1] Kristina Zelenay, “Query Optimization”, ETH Zürich, Seminar

Algorithmen für Datenbanksysteme, June 2005
[2] S. R. Madden, M. A. Shah, J. M. Hellerstein, and V. Raman.

Continuously adaptive continuous queries over streams. in Proc.
SIGMOD, 2002.

[3] R. Avnur and J. M. Hellerstein, Eddies: Continuously Adaptive
Query Optimization, SIGMOD 2000.

[4] P.G. Selinger et al. Access Path Selection in a Relational DBMS.
SIGMOD 1979.

[5] Ganguly, S., Hasan, W., Krishnamurthy, R.: Query Optimization
for Parallel Execution. In: Proc. of the 1992 ACM SIGMOD int’l.
Conf. on Management of Data, vol. 21, pp. 9-18. ACM Press, San
Diego (1992).

[6] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: a
scalable continuous query system for internet databases.In
SIGMOD, p. 379-390. ACM, 2000.

[7] A. Halevy, Z. Ives, J. Madhavan, P. Mork, D. Suciu, and I.
Tatarinov. The piazza peer data management system. IEEE Trans.
Knowl. Data Eng., 16(7):787-798, 2004.

[8] F. Neven and D. Van de Craen. Optimizing monitoring queries
over distributed data. In EDBT, p. 829-846, 2006.

[9] J. Bleiholder, et al. Query planning in the presence of overlapping
sources. In EDBT, p. 811-828, 2006.

[10] G. M. Thomas Neumann. Analysis of two existing and one new
dynamic programming algorithm for the eneration of optimal
bushy join trees without cross products. In Proceedings of the
32nd international conference on Very large data bases, pages
930-941. VLDB Endowment, 2008.

[11] T. Neumann. Query simplification: Graceful degradation for join-
order optimization. In C. Binning and B. Dageville, editors,
SIGMOD-PODS09: Compilation Proceedings of the International
Conference on Management of Data 28th Symposium on
Principles of Database Systems, pages 403-414, Providence, USA,
June 2009. Association for Computing Machinery (ACM).

[12] AlinDeutsch, Bertram Ludaascher, and Alan Nash. Rewriting
queries using views with access patterns under in tegrit y
constraints. The or.Comput.Sci, 371(3):200-226, 2007.

[13] G. Tan, N. Sun, and G. R. Gao. A parallel dynamic programming
algorithm on a multi-core architecture. In SPAA, 2007.

[14] G. Moerkotte and T. Neumann. Dynamic programming strikes
back. In SIGMOD, 2008.

[15] W.-S. Han, W. Kwak, J. Lee, G. M. Lohman, and V. Markl.
Parallelizing query optimization. In VLDB, 2008.

[16] N. W. Paton, V. Raman, G. Swart, and I. Narang. Autonomic
query parallelization using non-dedicated computers: An
evaluation of adaptivity options. In ICAC, 2006.

