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Abstract  Mobile systems are used in various environments. Thus, it is practical for image recognition systems to 
autonomously learn template images that are adaptive to objects in their various environments. However, learning 
the features of such objects requires large-scale computation and complex control. Hence, we propose an image 
recognition system that selects and learns regions that have a given object's features. This system is designed as a 
hardware/software (hw/sw) complex system with the multi-dimensional field programmable gate array (FPGA) 
“Vocalise.” This study discusses the possibility of dynamically building image databases and of real-time learning 
using the proposed image recognition system. Results indicate that the learning speed of the proposed method is 
estimated to be 1.4 × 103 faster than that obtained with a conventional software method. This suggests the possibility 
of real-time learning. 
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1. Introduction 
Of the many different intellectual processes available, 

image recognition systems have drawn public attention in 
recent years as a technology necessary for vehicular 
accident prevention, autonomous cars, and AI robots. 
Given the fact that use of mobile systems (such as cars 
and robots) with image recognition systems will 
increasingly spread in various environments, an image 
recognition system with a learning function that can easily 
adapt to various situations in real time is indispensable. 

In order to achieve this type of intelligent processing, 
close cooperation between software and logic circuits in a 
system large-scale integration (LSI) is essential to quickly 
process vast amounts of data. The Viola–Jones method [1], 
which focuses on the brightness of sub-regions (Harr-like 
features) as facial features, is known for having an 
accurate and rapid face-detection algorithm and learns 
features by using AdaBoost [2]; This method is able to 
detect faces from 384 × 288 pixel images on a 700 MHz 
Pentium III processor in about 67 ms (15 fps). Using this 
method, 38-layer detectors were trained on a single 466 
MHz AlphaStation XP900 with a huge number of images 
that spanned weeks; even though the algorithm was 
paralleled, it took about a day to process through all the 
images. In other words, real-time learning using this 
method is difficult due to the many layers and training 
images involved. Although the detection seems to be 
processed in the software in nearly real-time using the 
Viola–Jones method, the execution time increases with the 
increasing number of pixels. Even optimized OpenCV 

took 561 ms (1.78 fps) to execute detection processing of 
627 × 441 pixel images using the Viola–Jones method [3]. 

 Studies of pedestrian detection have also been popular 
in recent years. Human bodies vary more in color, 
brightness, and shape when compared with human faces. 
Thus, for such studies to be successful, a feature more 
robust to the variations is required. Combining the 
histograms of oriented gradients (HOG) feature with a 
support vector machine (SVM) has been proposed [4] and 
has been proven to be more robust than the Haar-like 
feature in the Viola–Jones method, but its detection speed 
is just less than 1 [fps] on high-end CPUs [5]. 

Thus, image recognition using a conventional, software-
only approach requires a lot of time, and realizing real-
time processing with such an approach is extremely 
difficult. In addition, when an intellectual process is 
conducted as part of the system, the system is required to 
utilize the result of that process and execute successive 
processes, which easily increases the time required for 
execution. Therefore, parallel and pipeline processing 
become indispensable to intellectual processing. 

With uniform (homogeneous) computing, method 
processing could be considered in parallel on a uniform 
processor array, i.e., general purpose computation on 
graphics processing units. However, when different 
processes are mixed (heterogeneous computing), to 
execute parallel processing must be executed using the 
logic circuits that correspond to these processes. On the 
other hand, professional knowledge is necessary for 
parallel processing of software programs and logic circuits. 
To settle this issue, the system must be designed such that 
the logic circuits are encapsulated within the application 
software, thus allowing them to be easily operated. To 
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realize this objective, we have previously proposed a logic 
system that was designed by objectifying logic circuits, 
called the hardware/software (hw/sw) complex system [6]. 

By applying the concept of the hw/sw complex system, 
we have also proposed various intellectual processing 
circuits (such as for image recognition [7] and voice 
recognition [8]) with the aim of integrating these circuits 
into a mobile system. Because mobile systems like robots 
require low power consumption and compact size, only 
weak processors can be loaded onto them. However, even 
a system with a weak processor can be easily accelerated 
by logic circuits. To examine this possibility, we used a 
logic circuit to complete phoneme processing of a voice 
recognition application and integrated the logic circuit 
with the recognition component (post-process) of 
conventional voice recognition software [9]. Also, we 
simultaneously integrated a vehicle control circuit [10]. 

Furthermore, we have utilized template matching as an 
image recognition method because of its convenience [11], 
and we have utilized a self-organizing map (SOM), which 
is a kind of machine learning, as a method for making 
templates [12]. We have also investigated a method to 
extract robust features by hierarchically learning multi-
resolution images using a tree-structured SOM; however, 
as we move to the finer-image tree layer, the amount of 
data to learn increases exponentially, which means that the 
amount of learning time required is very long. 

Therefore, we turned our focus to the variance (i.e., 
statistical quantity) of images and proposed a method for 
reducing the required computational amount [13,14]. An 
experiment showed that this method can selectively learn 
characteristic regions (such as chins or noses) and reduced 
data amounts to within 1/2 to 1/10th that of the previous 
method in each layer [15]. We then calculated SOM 
learning with a lot of computational complexity by using 
one field programmable gate array (FPGA) board in order 
to increase learning times; however, the combined system 
of SOM learning executed on one FPGA board, and 
feature-region search executed on a host CPU did not 
perform well due to a bottleneck in the communication 
between the FPGA board and host CPU. Thus, we found 
that this system could not learn in real time and increasing 
the parallel degree of tree-structured SOM learning was 
difficult because one FPGA board did not have enough 
capacity to realize plural SOM circuits. 

Hence, we designed new circuits not only for SOM 
learning but also for the feature-region search that had run 
on the host CPU in the previous system. In addition, we 
designed an image recognition system for self-learning of 
feature regions that is implemented on a multi-
dimensional FPGA, the “Virtual Object by Configurable 
Array of Little Scalable Engine” (Vocalise). The new 
circuits reduce communication between the host CPU and 
FPGA board. They also enable the parallel processing of 
the sub-regions of any given image required for the 
feature-region search. Implementation of the system on 
Vocalise allows us to load many SOM circuits and 
increases the degree of parallelism. We think that these 
modifications will enable real-time learning. 

Furthermore, dynamic building of image databases is 
possible, which means that knowledge of objects can be 
automatically acquired on demand, thus enabling a mobile 
system to learn about obstacles by passing scenes while 
running. Here, the term “image database” refers to any 

tree-structured feature region template. Any object can be 
represented using an interrelated set of feature regions. 

This study proposes an image recognition system for 
learning feature regions and evaluates its performance. 
With the proposed method, learning speeds are expected 
to increase by 1.4 × 103 times when compared with 
software-only systems, and recognition speeds are 
expected to increase by 13 times faster when compared 
with software implementation. This study is organized as 
follows. Section 2 explains the proposed method for 
feature-region learning. Section 3 explains the method’s 
configuration (or realization). Section 4 discusses the 
method’s performance evaluation as well as the circuit 
scale, power consumption, and possible speeds of a 
mobile system. The conclusions are given in Section 5. 

2. Feature-Region Learning Method 
Feature-region learning is a method for building tree-

structured feature region templates by learning features 
that have been narrowed down using multiple layers and 
resolutions — in other words, by generating multi-
resolution images by wavelet transform (here, the Haar 
transform) of the input images. Let the coarsest images be 
the root and finer images be branches in order to make a 
multi-resolution image tree with a hierarchical structure. 
In images of each resolution, there are plural sub-regions 
with characteristic images. Using the images in these sub-
regions creates templates that express an image 
characteristic. These templates can expand (express) an 
image. Likewise, these templates have coarse to fine tree-
structure relationships, which can be built by combining 
the feature-region search with the tree-structured SOM.  

2.1. Feature-Region Acquisition Method 

2.1.1. Feature Regions and the Acquisition Algorithm  
Feature regions can be classified into the two classes: 

high-variance regions and low-variance regions. High-
variance regions are those whose differences among 
images are easily seen; low-variance regions are those 
whose differences among images hardly appear.  

The proposed method for searching feature-regions is 
as follows:  

1: Select the feature region of an input image and 
acquire the base vectors from the selected area. 

2: Expand the input images in the selected area using 
the base vectors. 

3: Acquire the distribution variance of the expansion 
coefficients.  

4: Repeat steps 1–3 for each input image in that layer. 
Let regions where the variance is high be grouped as high-
variance regions. Let regions where the variance is low be 
grouped as low-variance regions. 

5: Selectively learn the feature regions of images in the 
next layer. 

In the proposed system, the cluster centers acquired by 
SOM learning are used as base vectors for simplicity. 

2.1.2. The SOM Learning Method 
This section describes a SOM learning method that 

includes clustering. SOM is an unsupervised type of 
classification learning for representing the input data of a 
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multi-dimensional space into a low dimensional map. It 
updates reference vectors placed in the low dimensional 
map according to input data. Clustering reference vectors 
in the trained map provides cluster centroids that can 
expand (express) input data.  

The learning procedure is shown below: 
1: Initialize reference vectors jw  by random data.  
2: Input data (input vectors x ) that are randomly 

picked from the target data to the SOM. 
3: Calculate the distance between an input vector x  and 

a reference vector jw . 
4: Let the reference vector with the smallest calculated 

distance be the winning vector c. 
5: Update such that the winning vector and its 

neighborhood vectors are close to an input vector, as 
shown in Equation 1: 

  ( 1) ( ) ( ) ( )( ( ))i i c iw t w t h t t x w tα+ = + −
     (1) 

where t is the time and, α  is the learning rate. The 
neighborhood vectors are determined by the neighborhood 
function hc (t). 

6: Repeat steps 2–5 until the updated reference vectors 
converge. 

7: After calculating the neighborhood distance, let the 
consecutive reference vectors whose neighborhood 
distances become less than the threshold be one cluster 
(clustering).  

8: Let the mean vector of all reference vectors 
belonging to the same cluster be the cluster centroid. 

During circuit implementation, the operation of the 
learning rate is realized by bit shift, and the neighborhood 
function is realized by a look-up table to reduce the circuit 
scale. In addition, let the clusters at the four corners of the 
map be the cluster centroids without clustering because 
cluster centroids often empirically appear in the corners. 

2.2. Acquisition of the Tree-Structured 
Template 

2.2.1. The Tree-Structured SOM 
Let the tree-structured SOM be SOMTree, defined as 

Equation 2. An overview of the tree-structured SOM is 
shown in Figure 1.  
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Figure 1. Overview of tree-structured SOM 

Tree-structured SOM building is shown in Figure 2; its 
procedure is as follows: 

 

Figure 2. Making child nodes and inputting images into the tree-
structured SOM 

 

Figure 3. Feature regions acquired by feature-region learning 

1: Apply wavelet transform to input images for multi-
resolution analysis. 

2: Input low-resolution images into the first layer 
1SOM .  

3: Cut out the feature region of the input images and 
learn that region. 

4: Apply clustering to the reference vectors in the 
trained map and classify input images by their distance 
from each cluster centroid ( 1,2, , )n n

li clCC i N=   
( 1, 2, , )n

cli N=  .  
5: Apply Gram–Schmidt orthonormalization to the 

cluster centroids to make base vectors ( 1, 2, , )n n
li clu i N=


 .  
6: Search feature regions using base vectors to acquire 

them (see Section 2.1.1.).  
7: Build the same number of SOMs in the next layer as 

there are cluster centroids 1
cN made by 1SOM  (i.e., the 

number of cluster centroids provided by a SOM in the 
present layer).  

8: Replace the input images classified in the present 
layer with finer resolution images and let these replaced 
images be the input for the SOMs in the next layer, 
corresponding to each cluster. 
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9: Repeat the procedure for the rest of the SOMs in 
SOMTree. 

In the proposed system, Gram–Schmidt orthonormalization 
is omitted, and cluster centroids are constantly at the four 
corner. 

The region reduction shown in Figure 1 is realized 
through selective learning of the feature regions, which 
can shorten the enormous processing time required. In 
addition, the result of feature-region learning for facial 
images [16,17] is shown in Figure 3. We can see that this 
method automatically acquires features considered by 
humans, such as chins, and can express a facial image by 
using the mutual relations of the feature regions. 

2.2.2. Template-Making Method 
This section describes a method to make templates 

using base vectors. A template is a linear combination of 
base vectors and expansion coefficients. A template is 
freely made by changing the value of the expansion 
coefficients. Templates are tree-structured just like the 
tree-structured SOMs. In the proposed system, a cluster 
centroid is considered a template for simplicity. 

2.3. The Image Recognition Method 
This section describes matching operations and a 

matching method that uses tree-structured templates. 

2.3.1. Matching Operation 
Template matching is conducted using the sum of 

absolute differences (SAD) as the distance between 
images. Equation 3 shows the general equation of the sum 
of absolute differences with template ,x yT  and detection 
window ,x yI . 
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Equations 4–8 show the matching operation of images 
in the YUV (brightness and color) representation. Here, 

yK , vK , and uK  represent the degree of contribution. 
When matching facial images, yK = 1.0, vK = 4.0, and 

uK = 4.0 to increase the contribution of skin color [11]. W 
and H show the width and height of the template, 
respectively. 

 , , ,( ) ( )n n
w h T w h I w hdY Y T Y I= −  (5) 

 , , ,( ) ( )n n
w h T w h I w hdU U T U I= −  (6) 

 , , ,( ) ( )n n
w h T w h I w hdV V T V I= −  (7) 

 , , , ,w h y w h u w h v w hDist K dY K dU K dV= + +  (8) 

2.3.2. Tree-Structured Template Matching 
Tree-structured template matching is coarse-to-fine 

template matching wherein the resolution of the template 
changes according to a hierarchy. Matching between high-
resolution images reflects the result of matching between 

low-resolution images. The advantage of coarse-to-fine 
template matching is its reduction of computational 
complexity and noise. 

The matching procedure is as follows:  
1: Execute template matching using templates from the 

first layer and beginning with input images that have low-
resolution.  

2: Substitute input images with higher-resolution 
images and let them be input images for the second layer. 

3: Let the scanned area in the second layer be the area 
in and around the template-matched area (the sum of 
absolute differences is minimal). 

4: Execute template matching using the second-layer 
templates. 

5: Repeat the procedure until the bottom layer is 
reached. 

Narrowing the scanned area in this way reduces the 
computational amount required for matching operations. 

3. Configuration Method 

3.1. The hw/sw Complex System 
An hw/sw complex system is a system in which the 

hardware and software cooperate. It consists of FPGA 
board(s) and a host CPU, which enables both the circuit’s 
high-speed parallel distributed processing and the 
software’s flexible processing. In this system, we call a 
circuit that executes operations in FPGA an “hwNet,” an 
object that encapsulates the hwNet an “hwObject,” and an 
object executed by the host CPU a “swObject.” As we can 
control hwNets by sending messages toward hwObjects in 
the application software, controlling hardware and software 
is much less complicated than in other types of systems. 

3.2. Vocalise 
Figure 4 shows an overview of Vocalise, which consists 

of a large number of hwModuleVSes (VSes). A VS has 
connectors in six directions, two synchronous dynamic 
random access memories (SDRAMs), and one FPGA 
(Xilinx Spar-tan3 XC3S4000). Vocalise’s scalable design 
allows us to change the number of VSes to fit the 
operational scale. An FPGA board used to control 
Vocalise is connected to the host CPU through a 
Peripheral Component Interconnect (PCI) slot, which can 
easily realize large-scale calculations requiring a large 
number of circuits. 

 

Figure 4. Overview of Vocalise 
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3.3. Feature Learning / Image Recognition 
System  

Figure 5 shows the an overview of a recognition system 
as it learns feature regions by using Vocalise. Learning 
and recognition processes utilize the same hwNet because 
recognition processes can reuse a feature-region learning 
(FRL) circuit’s distance calculation circuit (Section 3. 4. 
1), which is loaded as an hwNet. However, the input data 
must be changed when reusing a learning circuit as a 
recognition circuit. We accomplish this by using two 
different kinds of hwNet encapsulation: feature learning 
hwObject and image recognition hwObject. 

 

Figure 5. Overview of a feature learning / image recognition system and 
its processing flow 

The learning flow is as follows:  
1: A user pushes the learning start button.  
2: The learning / recognition management swObject 

commands the feature learning hwObject to start learning.  
3: The hwObject transmits input images to SDRAMs 

(when the system is loaded into a mobile system, we 
implement an hwNet that transmits the input from a 
camera attached to the mobile system). 

4: The hwObject commands the first learning / 
recognition hwNet to start. 

5: The hwNet starts to learn (i.e., acquires templates 
and feature regions). 

6: The hwNet sends input image IDs, child node IDs, 
and a start signal to an hwNet of the next layer. 

7: The hwNet writes templates to SDRAMs. 
8: The hwNet transmits node IDs and a learning end 

signal to the feature learning hwObject. 
9: The hwObject reads the templates from the target 

SDRAM. 
10: The swObject gives each template a file name (i.e., 

a node ID). 
11: Repeat steps 5–10 in the hwNet of the next layer. 

Only the first node receives a start signal from a 
hwObject (step 4), and hwNets give direct commands (e.g., 
start signals) to the remaining nodes, thus avoiding 
communication bottleneck between hardware and 
software. 

The recognition flow is as follows:  
1: A user pushes the recognition start button.  
2: The learning/recognition management swObject 

commands the image recognition hwObject to start 
recognizing.  

3: The hwObject transmits templates to an SDRAM.  
4: The hwObject commands the first 

learning/recognition hwNet to start. 
5: The hwNet starts to recognize (i.e., acquires the 

template and position when maximum similarity to an 
input image occurs.  

6: The hwNet transmits an input image ID, node IDs, 
and a start signal to a learning/recognition hwNet of the 
next layer.  

7: The hwNet transmits its node ID, the template and 
position (that are acquired in step 5) to the image 
recognition hwObject. 

8: Repeat steps 5–7 in hwNets of the next layer.  
9: A learning/recognition management swObject unifies 

matching results and controls the weight of the evaluation 
function. 

As the proposed system executes heavy processes with 
hardware, it can execute complicated processing with 
software. For example, we can add processing to avoid 
collisions or to emit sounds of caution after executing 
tree-structured template matching and recognizing an 
obstacle. Thus, one advantage of hw/sw complex systems 
is that it is easy to apply recognition systems to them. 

3.4. Feature-Region Learning Unit  
This section describes the Feature Region Learning 

(FRL) circuit (shown in Figure 6) and its implementation 
on Vocalise. 

 

Figure 6. Overview of the FRL circuit 

3.4.1. Feature-Region Learning (FRL) Circuit 
Feature-region learning is tree-structured processing. 

The FRL circuit is in charge of processing the tree-
structured node unit and consists of the SOM circuit and 
the feature-region search (FRS) circuit.  

First, images are input to the SOM circuit for acquiring 
templates. Then, the FRS circuit acquires feature regions 
based on the templates and sends feature regions to nodes 
in the next layer. Learning narrowed-down feature regions 
step-by-step in this way, hierarchically from low-
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resolution to high-resolution layers, creates a tree-
structured feature template. 

3.4.2. The SOM Circuit 
Figure 7 shows the an overview of the SOM circuit, 

which is connected to both the FRS circuit and the FPGA 
Internal Bus (FIB). In-Img Port is a port for reading input 
images, and RefVec Port is a port for writing reference 
vectors. The SOM Unit STT carries out overall sequence 
processing in this architecture. SOM Core takes charge of 
calculating the distance between an input vector and 
reference vectors as well as updating reference vectors in 
the SOM learning. The same number of processing 
elements (called SOM PEs) as there are reference vectors 
execute parallel distributed processing. 

 
Figure 7. Overview of the SOM circuit and its processing flow 

First, loaded images are sequentially written to the 
block random access memory (BRAM) and distributed 
RAM; they are then input into SOM Core by the InImg 
Buf Controller and Rect CutOut Adrs Creator. Reference 
vectors are written to the host PC’s main memory from 
the buffers in SOM Core after the learning iteration 
finishes. The SOM circuit that has finished the learning 
iteration transmits the acquired templates and also inputs 
images to the FRS circuit. After the FRS circuit finishes 
calculating feature regions, the feature regions are 
returned to the SOM circuit. These feature regions, 
NextIn-ImgIndex, and NextSOMIndex are sent to the next 
FRL circuit (NextSOMIndex is an index that indicates 
which SOM (node) in the next layer should be trained 
using the images that have been learned by the present 
SOM).  

3.4.3. The Feature Region Search (FRS) Circuit 
An FRS circuit is a circuit that acquires feature regions. 

Figure 8 shows an overview of the FRS circuit, which 
consists of ImgParaIn, FRSCore, and Filter. 

 

Figure 8. Overview of the FRS circuit 

Figure 9 shows the processing flow of the FRS circuit. 
First, templates that are learned by the SOM circuit are set 
in a buffer. The pixels of input images sent from the SOM 
circuit are input to ImgParaIn. ImgParaIn outputs different 
sub-regions to 17 PEs in FRSCore. Each PE in FRS Core 
calculates the inner product between a template and an 
input image and the variance of the inner product values. 
The calculated variances are passed through Filter to 
determine high-variance regions (regions where the 
variance is higher than a certain threshold) and low-
variance regions (regions where the variance is lower than 
a certain threshold), which are then output to the SOM 
circuit. 

 
Figure 9. Processing flow of the FRS circuit 

3.4.4. Implementation of FRL Circuits on Vocalise 
The merit of using Vocalise (which is an FPGA array) 

is that it can build the most suitable processing elements 
and placement structure. The proposed system executes 
four-layer feature-region learning to make four child 
nodes and 85 nodes. Figure 10 shows the node placement 
on Vocalise. The address z-y-x in the figure corresponds 
to the address of Figure 4. 

 
Figure 10. Processing flow of the FRS circuit 

We assign the processing of n-th layer to the board of 
address z=n-1 and utilize Vocalise in the three dimensions. 
We place one node on a VS in the first layer and four 
nodes on a VS in the second and subsequent layer. 
Vocalise Communication (VC) Bus realizes communication 
between software and a node, and Vocalise Internal (VI) 
Bus realizes communication between adjacent nodes. In 
this way, parallel processing in the same layer and 
pipeline processing in different layers are possible, 
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increasing the parallel degree to 85 (the total number of 
nodes). 

3.5. Image Recognition Unit 
Figure 11 shows an overview of the image recognition 

unit, which uses a tree-structured feature region template 
that has been learned. Searching the paths of a tree-
structured template determines the optimally matched 
templates (i.e., the optimal solution). Evaluation of each 
template is executed by tree-structured nodes (the FRL 
circuit’s distance calculators and comparators are diverted 
to recognition). The calculated result in each node is 
weighted; the whole weighting process becomes the 
evaluation function. Plural optimal paths are found by 
searching not only the best matched templates but also the 
2nd best matched templates (and of course, the 3rd, 4th, 
and so forth can also be acquired), which allows sufficient 
feature points. 

 
Figure 11. Tree-structured template matching 

 
Figure 12. Time charts of the SOM circuit, FRS circuit, and FRL circuit 

4. Performance Evaluation 

4.1. Performance of the FRL Circuit 
Figure 12 shows the time charts of the SOM circuit, 

FRS circuit, and FRL circuit. The SOM circuit can 
perform at least 16 times better than sequential processing 
due to having 16 PEs perform parallel computation of 
distance calculations and update operations. The FRS 
circuit can perform at least 17 times better than sequential 
processing due to having 17 PEs perform parallel 
computation of 17 sub-regions. 

We evaluated the performance of the FRL circuit. Table 1 
shows results from the register transfer level (RTL) 
simulation by Veritak (verilog simulator), from a 
conventional software-only method, and from actual 
machine operation by hwModule VL (beginning from the 
time the software sends a start signal to the circuit to the 
time the software receives an end signal from the circuit). 

Table 1. The FRL Circuit Unit’s Processing Speed When Learning 
RTL simulation [ms] Software[ms] Actual operation[ms] 

4.7 3.2×102 16 

Evaluation conditions will be described when we 
discuss performance evaluation. One hundred images and 
16 pixels (feature region size) from each input image were 
used; the pixels of an input image were 4 × 4 in the first 
layer, 8 × 8 in the second layer, 16 × 16 in the third layer, 
and 32 × 32 in the fourth layer and the resolutions are 
made by wavelet transform. The SOM’s map size was 16, 
its iteration limit was 2000, the number of PEs was 17, 
and the number of templates was 4. Few pixels from each 
image were used because we used images that had been 
compressed by wavelet transform. In future, we will 
regard the input region of images as an interest region; this 
may expand the region for learning. 

A compiler of turbo C++ 2006 compiler, Intel Core i7 
(4 GHz) CPU (one core), and Windows 7 (32bit) OS were 
used in the software’s processing. In the RTL simulation, 
we assumed a circuit operation frequency of 66 MHz. In 
addition, the hwModuleVL used for actual machine 
operation was the FPGA board that is accessible to the 
host CPU through a PCI slot. The FRL circuit is supposed 
to be implemented on the hwModuleVS of Vocalise, but 
instead hwModuleVL was used for the experiment; its 
operation frequency was 33 MHz.  

The result from the actual machine operation was 
approximately 3.4 times poorer than the simulation result 
(shown in Table 1). 

The first cause of delay in the actual machine operation 
was an operation frequency was of 33 MHz (compared to 
the 66 MHz assumed in the RTL simulation) that occurred 
due to the critical path in the circuit. The second cause of 
delay was a communication bottleneck between the 
hardware and software. We believe the actual processing 
performance could be closer to simulation results if circuit 
optimization were conducted. 

In addition, the processing performance acquired by 
simulation was 68 times than that obtained by using a 
conventional software method. The processing 
performance acquired by actual machine operation of our 
proposed system was 20 times better compared to the 
software method. However, because we believe that 
machine operation can achieve performance nearer to 
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simulation results (as stated above), we assume the 
simulation performance as the processing performance of 
the FRL circuit unit when we evaluate the performance of 
the proposed system in the next section. 

4.2. Performance of the Feature-Region 
Learning with Vocalise 

Vocalise’s SDRAM access, VI Bus, and VC Bus are 
thought to cause bottlenecks in the proposed method. 
Figure 13 shows an estimate of the bottlenecks. Note that 
wait states of (a) – (d) occurs at each VI Bus, VC Bus, and 
SDRAM of Vocalise. Figure 13 (a) and (b) show VI Bus’s 
communication bottlenecks when nodes send input data to 
other nodes in the lower layer via a connector. Figure 13(c) 
shows SDRAM’s access bottlenecks when nodes read 
input data and write results. Figure 13(d) shows VC Bus’s 
communication bottlenecks when a host CPU reads results 
from SDRAMs on hwModuleVSes. 

 

Figure 13. Estimate of bottlenecks in the proposed system 

Table 2. Feature-Region Learning Delays (Wait Times) with 
Vocalise 

 The number of clock cycles[clk] Time [ sµ ] Cause 
Delay 1 225 3.4 a 
Delay 2 192 2.9 c 
Delay 3 225 3.4 b 
Delay 4 57 0.86 a 
Delay 5 192 2.9 c 
Delay 6 192 2.9 d 
Delay 7 225 3.4 b 
Delay 8 15 0.23 a 
Delay 9 192 2.9 c 

Delay 10 960 14 d 
Total Delay 2473 37  

Table 2 shows an estimate of the critical path delay 
using the tree structure shown in Figure 13(e). The total 
delay is 37 sµ . Template transfer to software (d) causes 
the worst bottleneck, possibly because the number of 
nodes increases in the lower layers, thus lengthening the 

wait time. One way to remove a bottleneck is to increase 
the number of VSes to increase communication links. We 
believe bottlenecks can be improved depending on how 
Vocalise is used. 

The proposed method’s processing speed is shown 
below. Theoretically, every node processing in the same 
layer can be processed in parallel. Therefore, the time 
required for completing the whole process is 4 (the 
number of layers) × TFRL (the processing time of the FRL 
circuit unit). On the other hand, in the case of sequential 
processing done by software, the total processing time is 
85 (the number of nodes) × TFRL. Hence, we can estimate 
the performance of the proposed method as shown in 
Table 3. The proposed method can increase software’s 
learning speed by 1.4 × 103. Thus, we see that the 
proposed method is able to realize real-time processing, 
but the software method is not. In addition, after roughly 
estimating the recognition speeds on the basis of the tree-
structured template (of 16 pixels) and input images (of 
four resolutions: 80 × 60, 160 × 120, 320 × 240, and 640 × 
480) when searching for the first and second best matched 
templates, the proposed system is 13 times faster than the 
software method. 

Table 3. Comparison of Processing Speeds for the Proposed System 
and a Software-Only Method 

 Proposed system[ms] Software[ms] 

Learning 19 2.7× 104 

Recognition 5.7 78 

There are several reasons why the recognition unit 
results in less performance enhancement than does the 
feature learning unit.  

First, the recognition algorithm (which uses coarse-to-
fine template matching) does not require high computational 
power when compared with the learning algorithm 
because it searches only narrowed-down regions of input 
images and does not require much iteration compared to 
the learning algorithm. 

Second, to search regions, the recognition unit has to 
cut out regions of input images many more times when 
compared with than the learning unit and doing so is not 
designed for efficient processing (i.e., in parallel). Of 
course, the FRS circuit is designed to quickly search 
regions, but it is specialized for feature-region searches, 
which means that we cannot disperse this module to the 
recognition unit; at this time only the FRL circuit’s SOM 
circuit is thus dispersed. With the SOM circuit, inputting 
cut out regions is sequentially processed, which we 
believe impedes the system. The recognition unit’s 
processing time could be accelerated if we change the 
circuit to process search regions in parallel as pipeline 
processing is often done for block matching.  

Third, the recognition unit utilizes fewer resources 
when compared with SOM. The recognition unit requires 
15 nodes when searching for the first and second best 
matched templates; however, the SOM learning unit 
requires 85 nodes. However, when more feature points are 
needed, you can process up to 85 feature points (the 
number of nodes) can be used simultaneously by the 
recognition unit because up to 85 nodes can be used for 
parallel processing. Use of the recognition unit is thought 
to be much faster than use of software when more feature 
points are needed. 
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4.3. Performance of Mobile Systems 
The proposed method utilizes 22 hwModuleVSes. As 

the Xilinx FPGA in the VS has 4 million system gates 
(55000 slices), it is thought that the proposed method’s 
becomes 88 million system gates (1210000 slices). These 
numbers suggest that large-scale circuits are indispensable 
to real-time learning, and, indeed, we see that the robot on 
which we implement our proposed method requires an 
enormous circuit scale. We implement the proposed 
method on Vocalise, which is loaded on our robot as 
shown in Figure 14. We call the robot Vocalibot. The 
circuit scales of the whole processes required by Vocalibot 
are shown in Table 4, which is a partly modified version 
from the table presented in [14]. The Leg Control and 
Arm Control circuits generate pulses to control the 
stepping and servo motors, respectively, installed on 
Vocalibot. The Stereo Distance circuits preprocess images 
from cameras to acquire the information required to 
execute triangulation. The Voice Recognition circuit 
preprocesses voice data mainly by wavelet transform and 
executes continuous and pipelined template matching to 
recognize phonemes (which are the smallest unit of 
speech). The Voice Synthesis circuit consists of a large 
number of shift registers and simulates voice waves that 
propagate in the human vocal tract. The Video Codec 
circuit compresses video by motion estimation that is 
realized by block matching circuits with a Single 
Instruction Multiple Data (SIMD) structure. The 
Transmission Control Protocol / Internet Protocol 
(TCP/IP) Stack circuit executes pipeline processing of the 
TCP/IP processing required for internet communication. 
The Video Codec circuit and the TCP/IP Stack circuit 
compose the Internet Booster to accelerate Web 
applications such as Skype [18]. 

 
Figure 14. Vocalibot 

Table 4. Circuit Scale of Brain Processes for Vocalibot 
Brain Process Size of Circuit (Slices) 

 Current Expected 
Leg Control Wheel Control 4000 4000 

 Arm Control 3000 15000 
Image 

Recognition Stereo Distance 1200 4000 

 Image Learning 
Recognition 27500 1210000 

Voice Recognition 15200 15200 
Voice Synthesis 25400 76220 

Video Codec 13000 13000 
TCP/IP Stack 8300 41500 

Total 97600 1378900 

Vocalibot will utilize about 30 VSes in total and its 
total circuit scale is estimated to be 1.4 million slices. A 
system with circuit-scale scalability like Vocalise is 
indispensable to a robot, and robots need to be connected 
to a large number of sensor circuit boards such as camera 
drivers and motor drivers. We believe that FPGA arrays, 
which provide more IO connectors than CPU/GPU, are 
better suited for robots. Some FPGAs have much higher 
capacities than the ones used in this study, and the 
proposed algorithm can be implemented on any of them. 
However, while this allows for a more free pipelined 
structure (because the inside of the FPGA can be freely 
programmed), the design becomes flat (i.e., 2D). The 3D 
FPGA, Vocalise enables us to build circuit structures the 
same way we would assemble blocks, which saves us the 
trouble of thinking about 3D algorithms while working in 
a lower dimension. 

Furthermore, even high capacity FPGAs will not 
provide sufficient logic capacity if the number of layers 
and PEs increases. Also, when considering robots, we 
believe that utilizing plural FPGA board is important for 
securing the number of input/output (IO) connectors, 
which is why we believe that there is merit in the Vocalise 
implementation. Building Vocalise with high capacity 
FPGAs would definitely be even better because, in that 
case, there would be no need for circuit scale awareness, 
which is a disadvantage of FPGA implementation. Doing 
so would also improve development speeds because naive 
FPGA implementation is possible. However, under 
current conditions, cost becomes an important factor when 
choosing which type of FPGA to use because high 
capacity FPGAs are very expensive.  

Power consumption is another important factor to 
consider. Frequent battery charges for mobile systems is 
not possible outside, which means that, practically 
speaking, low-power systems are required. In terms of 
power consumption, we believe that a system with 
Vocalise is effective. Such a system’s performance per 
FPGA watt is 25 times better than that of a CPU/GPU 
system, according to the joint research of Swiss university 
ETH Zurich and Xilinx [19]. The system’s power 
consumption performed similarly when compared with 
that of the HOG and Viola–Jones method [5,20]. 

The power consumption of hwModuleVS and CPU are 
reported in [21] and shown in Table 5. The operating 
consumption of 22 VSes in the proposed system is 
estimated to be 74.8 W when we assume that the FRL 
circuit's power consumption is the same as that of the 
Poisson equation circuit. We see that the operating 
consumption of Vocalise is 2.4 times more that of a single 
CPU. 

Table 5. Power Consumption When Calculating the Poisson 
Equation  

 Standby [W] Operating [W] 
hwModuleVS × 1 2.2 3.4 

CPU × 1 - 31.8 
In addition to robots, our system can be implemented 

for use in high-speed mobile systems such as cars. A 
mobile system running at 100 km/h moves approximately 
at 30 m/s. It is thought that the proposed system can 
handle recognition processing, including post-processing, 
at around a few seconds. In other words, our proposed 
system demonstrates high performance that an object 30 m 
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away can be recognized, and post-processing (e.g., 
collision avoidance) can be completed before accidents 
occur. Such high performance cannot be achieved without 
hardware preprocessing. 

5. Conclusion 
We propose an image recognition system that learns 

feature regions using the FPGA Vocalise for use with 
mobile systems, and show that the proposed system can be 
easily designed at the abstraction level of object-oriented 
design by using an hw/sw complex system. In addition, 
we show that reusing the circuit is as easy as application 
of the recognition system. The results of the RTL 
simulation of the FRL circuit show that the learning speed 
of one node in the tree structure is 68 times faster than the 
learning speed obtained with software. We also show that 
we can freely connect an FRL circuit to another FRL 
circuit via VI Bus and that this enables accelerated 
pipeline processing. The learning speed of the proposed 
method is estimated to be 1.4 × 103 times faster than that 
obtained with software, and the recognition speed is 13 
times faster. Furthermore, we demonstrate that it is 
suitable for mobile systems to implement intellectual 
processing on FPGAs in terms of circuit scale and power 
consumption. 

In the future, we will evaluate the proposed system as it 
actually operates. In addition, we will conduct combined 
operations of vehicle control and image learning by 
loading the proposed system onto the Vocalibot we are 
still developing. Furthermore, we will conduct 
experiments to confirm that the proposed system can learn 
scenic features—in other words, that obstacles in passing 
scenes may be learned the same way that feature regions 
such as noses and chins in facial images can be 
automatically learned through feature-region learning. 
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