
Journal of Computer Sciences and Applications, 2015, Vol. 3, No. 1, 1-10
Available online at http://pubs.sciepub.com/jcsa/3/1/1
© Science and Education Publishing
DOI:10.12691/jcsa-3-1-1

Self-Learning of Feature Regions for Image Recognition

Satoru Yokota1,*, Jiang Li1, Yuichi Ogishima1, Hiromasa Kubo1, Hakaru Tamukoh2,*, Masatoshi Sekine1

1Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
2Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan

*Corresponding author: yokota@sekine-lab.ei.tuat.ac.jp, tamukoh@brain.kyutech.ac.jp

Received January 09, 2015; Revised January 19, 2015; Accepted January 22, 2015

Abstract Mobile systems are used in various environments. Thus, it is practical for image recognition systems to
autonomously learn template images that are adaptive to objects in their various environments. However, learning
the features of such objects requires large-scale computation and complex control. Hence, we propose an image
recognition system that selects and learns regions that have a given object's features. This system is designed as a
hardware/software (hw/sw) complex system with the multi-dimensional field programmable gate array (FPGA)
“Vocalise.” This study discusses the possibility of dynamically building image databases and of real-time learning
using the proposed image recognition system. Results indicate that the learning speed of the proposed method is
estimated to be 1.4 × 103 faster than that obtained with a conventional software method. This suggests the possibility
of real-time learning.

Keywords: autonomous learning, feature region, hw/sw complex system, image recognition, vocalise

Cite This Article: Satoru Yokota, Jiang Li, Yuichi Ogishima, Hiromasa Kubo, Hakaru Tamukoh, and
Masatoshi Sekine, “Self-Learning of Feature Regions for Image Recognition.” Journal of Computer Sciences and
Applications, vol. 3, no. 1 (2015): 1-10. doi: 10.12691/jcsa-3-1-1.

1. Introduction
Of the many different intellectual processes available,

image recognition systems have drawn public attention in
recent years as a technology necessary for vehicular
accident prevention, autonomous cars, and AI robots.
Given the fact that use of mobile systems (such as cars
and robots) with image recognition systems will
increasingly spread in various environments, an image
recognition system with a learning function that can easily
adapt to various situations in real time is indispensable.

In order to achieve this type of intelligent processing,
close cooperation between software and logic circuits in a
system large-scale integration (LSI) is essential to quickly
process vast amounts of data. The Viola–Jones method [1],
which focuses on the brightness of sub-regions (Harr-like
features) as facial features, is known for having an
accurate and rapid face-detection algorithm and learns
features by using AdaBoost [2]; This method is able to
detect faces from 384 × 288 pixel images on a 700 MHz
Pentium III processor in about 67 ms (15 fps). Using this
method, 38-layer detectors were trained on a single 466
MHz AlphaStation XP900 with a huge number of images
that spanned weeks; even though the algorithm was
paralleled, it took about a day to process through all the
images. In other words, real-time learning using this
method is difficult due to the many layers and training
images involved. Although the detection seems to be
processed in the software in nearly real-time using the
Viola–Jones method, the execution time increases with the
increasing number of pixels. Even optimized OpenCV

took 561 ms (1.78 fps) to execute detection processing of
627 × 441 pixel images using the Viola–Jones method [3].

 Studies of pedestrian detection have also been popular
in recent years. Human bodies vary more in color,
brightness, and shape when compared with human faces.
Thus, for such studies to be successful, a feature more
robust to the variations is required. Combining the
histograms of oriented gradients (HOG) feature with a
support vector machine (SVM) has been proposed [4] and
has been proven to be more robust than the Haar-like
feature in the Viola–Jones method, but its detection speed
is just less than 1 [fps] on high-end CPUs [5].

Thus, image recognition using a conventional, software-
only approach requires a lot of time, and realizing real-
time processing with such an approach is extremely
difficult. In addition, when an intellectual process is
conducted as part of the system, the system is required to
utilize the result of that process and execute successive
processes, which easily increases the time required for
execution. Therefore, parallel and pipeline processing
become indispensable to intellectual processing.

With uniform (homogeneous) computing, method
processing could be considered in parallel on a uniform
processor array, i.e., general purpose computation on
graphics processing units. However, when different
processes are mixed (heterogeneous computing), to
execute parallel processing must be executed using the
logic circuits that correspond to these processes. On the
other hand, professional knowledge is necessary for
parallel processing of software programs and logic circuits.
To settle this issue, the system must be designed such that
the logic circuits are encapsulated within the application
software, thus allowing them to be easily operated. To

2 Journal of Computer Sciences and Applications

realize this objective, we have previously proposed a logic
system that was designed by objectifying logic circuits,
called the hardware/software (hw/sw) complex system [6].

By applying the concept of the hw/sw complex system,
we have also proposed various intellectual processing
circuits (such as for image recognition [7] and voice
recognition [8]) with the aim of integrating these circuits
into a mobile system. Because mobile systems like robots
require low power consumption and compact size, only
weak processors can be loaded onto them. However, even
a system with a weak processor can be easily accelerated
by logic circuits. To examine this possibility, we used a
logic circuit to complete phoneme processing of a voice
recognition application and integrated the logic circuit
with the recognition component (post-process) of
conventional voice recognition software [9]. Also, we
simultaneously integrated a vehicle control circuit [10].

Furthermore, we have utilized template matching as an
image recognition method because of its convenience [11],
and we have utilized a self-organizing map (SOM), which
is a kind of machine learning, as a method for making
templates [12]. We have also investigated a method to
extract robust features by hierarchically learning multi-
resolution images using a tree-structured SOM; however,
as we move to the finer-image tree layer, the amount of
data to learn increases exponentially, which means that the
amount of learning time required is very long.

Therefore, we turned our focus to the variance (i.e.,
statistical quantity) of images and proposed a method for
reducing the required computational amount [13,14]. An
experiment showed that this method can selectively learn
characteristic regions (such as chins or noses) and reduced
data amounts to within 1/2 to 1/10th that of the previous
method in each layer [15]. We then calculated SOM
learning with a lot of computational complexity by using
one field programmable gate array (FPGA) board in order
to increase learning times; however, the combined system
of SOM learning executed on one FPGA board, and
feature-region search executed on a host CPU did not
perform well due to a bottleneck in the communication
between the FPGA board and host CPU. Thus, we found
that this system could not learn in real time and increasing
the parallel degree of tree-structured SOM learning was
difficult because one FPGA board did not have enough
capacity to realize plural SOM circuits.

Hence, we designed new circuits not only for SOM
learning but also for the feature-region search that had run
on the host CPU in the previous system. In addition, we
designed an image recognition system for self-learning of
feature regions that is implemented on a multi-
dimensional FPGA, the “Virtual Object by Configurable
Array of Little Scalable Engine” (Vocalise). The new
circuits reduce communication between the host CPU and
FPGA board. They also enable the parallel processing of
the sub-regions of any given image required for the
feature-region search. Implementation of the system on
Vocalise allows us to load many SOM circuits and
increases the degree of parallelism. We think that these
modifications will enable real-time learning.

Furthermore, dynamic building of image databases is
possible, which means that knowledge of objects can be
automatically acquired on demand, thus enabling a mobile
system to learn about obstacles by passing scenes while
running. Here, the term “image database” refers to any

tree-structured feature region template. Any object can be
represented using an interrelated set of feature regions.

This study proposes an image recognition system for
learning feature regions and evaluates its performance.
With the proposed method, learning speeds are expected
to increase by 1.4 × 103 times when compared with
software-only systems, and recognition speeds are
expected to increase by 13 times faster when compared
with software implementation. This study is organized as
follows. Section 2 explains the proposed method for
feature-region learning. Section 3 explains the method’s
configuration (or realization). Section 4 discusses the
method’s performance evaluation as well as the circuit
scale, power consumption, and possible speeds of a
mobile system. The conclusions are given in Section 5.

2. Feature-Region Learning Method
Feature-region learning is a method for building tree-

structured feature region templates by learning features
that have been narrowed down using multiple layers and
resolutions — in other words, by generating multi-
resolution images by wavelet transform (here, the Haar
transform) of the input images. Let the coarsest images be
the root and finer images be branches in order to make a
multi-resolution image tree with a hierarchical structure.
In images of each resolution, there are plural sub-regions
with characteristic images. Using the images in these sub-
regions creates templates that express an image
characteristic. These templates can expand (express) an
image. Likewise, these templates have coarse to fine tree-
structure relationships, which can be built by combining
the feature-region search with the tree-structured SOM.

2.1. Feature-Region Acquisition Method

2.1.1. Feature Regions and the Acquisition Algorithm
Feature regions can be classified into the two classes:

high-variance regions and low-variance regions. High-
variance regions are those whose differences among
images are easily seen; low-variance regions are those
whose differences among images hardly appear.

The proposed method for searching feature-regions is
as follows:

1: Select the feature region of an input image and
acquire the base vectors from the selected area.

2: Expand the input images in the selected area using
the base vectors.

3: Acquire the distribution variance of the expansion
coefficients.

4: Repeat steps 1–3 for each input image in that layer.
Let regions where the variance is high be grouped as high-
variance regions. Let regions where the variance is low be
grouped as low-variance regions.

5: Selectively learn the feature regions of images in the
next layer.

In the proposed system, the cluster centers acquired by
SOM learning are used as base vectors for simplicity.

2.1.2. The SOM Learning Method
This section describes a SOM learning method that

includes clustering. SOM is an unsupervised type of
classification learning for representing the input data of a

 Journal of Computer Sciences and Applications 3

multi-dimensional space into a low dimensional map. It
updates reference vectors placed in the low dimensional
map according to input data. Clustering reference vectors
in the trained map provides cluster centroids that can
expand (express) input data.

The learning procedure is shown below:
1: Initialize reference vectors jw by random data.
2: Input data (input vectors x) that are randomly

picked from the target data to the SOM.
3: Calculate the distance between an input vector x and

a reference vector jw .
4: Let the reference vector with the smallest calculated

distance be the winning vector c.
5: Update such that the winning vector and its

neighborhood vectors are close to an input vector, as
shown in Equation 1:

 (1) () () ()(())i i c iw t w t h t t x w tα+ = + −
    (1)

where t is the time and, α is the learning rate. The
neighborhood vectors are determined by the neighborhood
function hc (t).

6: Repeat steps 2–5 until the updated reference vectors
converge.

7: After calculating the neighborhood distance, let the
consecutive reference vectors whose neighborhood
distances become less than the threshold be one cluster
(clustering).

8: Let the mean vector of all reference vectors
belonging to the same cluster be the cluster centroid.

During circuit implementation, the operation of the
learning rate is realized by bit shift, and the neighborhood
function is realized by a look-up table to reduce the circuit
scale. In addition, let the clusters at the four corners of the
map be the cluster centroids without clustering because
cluster centroids often empirically appear in the corners.

2.2. Acquisition of the Tree-Structured
Template

2.2.1. The Tree-Structured SOM
Let the tree-structured SOM be SOMTree, defined as

Equation 2. An overview of the tree-structured SOM is
shown in Figure 1.

1

2 2 2
1
3 3 3
11

4 4 4
111

{ ;

, , , ;

, , , , ;

, , , , }
I

I IJI

i I

ij IJ

ijk IJ K

SOMTree SOM
SOM SOM SOM
SOM SOM SOM

SOM SOM SOM

=

 

 

 

 (2)

Figure 1. Overview of tree-structured SOM

Tree-structured SOM building is shown in Figure 2; its
procedure is as follows:

Figure 2. Making child nodes and inputting images into the tree-
structured SOM

Figure 3. Feature regions acquired by feature-region learning

1: Apply wavelet transform to input images for multi-
resolution analysis.

2: Input low-resolution images into the first layer
1SOM .

3: Cut out the feature region of the input images and
learn that region.

4: Apply clustering to the reference vectors in the
trained map and classify input images by their distance
from each cluster centroid (1,2, ,)n n

li clCC i N= 
(1, 2, ,)n

cli N=  .
5: Apply Gram–Schmidt orthonormalization to the

cluster centroids to make base vectors (1, 2, ,)n n
li clu i N=


 .
6: Search feature regions using base vectors to acquire

them (see Section 2.1.1.).
7: Build the same number of SOMs in the next layer as

there are cluster centroids 1
cN made by 1SOM (i.e., the

number of cluster centroids provided by a SOM in the
present layer).

8: Replace the input images classified in the present
layer with finer resolution images and let these replaced
images be the input for the SOMs in the next layer,
corresponding to each cluster.

4 Journal of Computer Sciences and Applications

9: Repeat the procedure for the rest of the SOMs in
SOMTree.

In the proposed system, Gram–Schmidt orthonormalization
is omitted, and cluster centroids are constantly at the four
corner.

The region reduction shown in Figure 1 is realized
through selective learning of the feature regions, which
can shorten the enormous processing time required. In
addition, the result of feature-region learning for facial
images [16,17] is shown in Figure 3. We can see that this
method automatically acquires features considered by
humans, such as chins, and can express a facial image by
using the mutual relations of the feature regions.

2.2.2. Template-Making Method
This section describes a method to make templates

using base vectors. A template is a linear combination of
base vectors and expansion coefficients. A template is
freely made by changing the value of the expansion
coefficients. Templates are tree-structured just like the
tree-structured SOMs. In the proposed system, a cluster
centroid is considered a template for simplicity.

2.3. The Image Recognition Method
This section describes matching operations and a

matching method that uses tree-structured templates.

2.3.1. Matching Operation
Template matching is conducted using the sum of

absolute differences (SAD) as the distance between
images. Equation 3 shows the general equation of the sum
of absolute differences with template ,x yT and detection
window ,x yI .

 , ,
0 0

 | |
H W

w h x w y h
h w

M T I + +
= =

= −∑∑ (3)

 ,
0 0

H W

w h
h w

M Dist
= =

= ∑∑ (4)

Equations 4–8 show the matching operation of images
in the YUV (brightness and color) representation. Here,

yK , vK , and uK represent the degree of contribution.
When matching facial images, yK = 1.0, vK = 4.0, and

uK = 4.0 to increase the contribution of skin color [11]. W
and H show the width and height of the template,
respectively.

 , , ,() ()n n
w h T w h I w hdY Y T Y I= − (5)

 , , ,() ()n n
w h T w h I w hdU U T U I= − (6)

 , , ,() ()n n
w h T w h I w hdV V T V I= − (7)

 , , , ,w h y w h u w h v w hDist K dY K dU K dV= + + (8)

2.3.2. Tree-Structured Template Matching
Tree-structured template matching is coarse-to-fine

template matching wherein the resolution of the template
changes according to a hierarchy. Matching between high-
resolution images reflects the result of matching between

low-resolution images. The advantage of coarse-to-fine
template matching is its reduction of computational
complexity and noise.

The matching procedure is as follows:
1: Execute template matching using templates from the

first layer and beginning with input images that have low-
resolution.

2: Substitute input images with higher-resolution
images and let them be input images for the second layer.

3: Let the scanned area in the second layer be the area
in and around the template-matched area (the sum of
absolute differences is minimal).

4: Execute template matching using the second-layer
templates.

5: Repeat the procedure until the bottom layer is
reached.

Narrowing the scanned area in this way reduces the
computational amount required for matching operations.

3. Configuration Method

3.1. The hw/sw Complex System
An hw/sw complex system is a system in which the

hardware and software cooperate. It consists of FPGA
board(s) and a host CPU, which enables both the circuit’s
high-speed parallel distributed processing and the
software’s flexible processing. In this system, we call a
circuit that executes operations in FPGA an “hwNet,” an
object that encapsulates the hwNet an “hwObject,” and an
object executed by the host CPU a “swObject.” As we can
control hwNets by sending messages toward hwObjects in
the application software, controlling hardware and software
is much less complicated than in other types of systems.

3.2. Vocalise
Figure 4 shows an overview of Vocalise, which consists

of a large number of hwModuleVSes (VSes). A VS has
connectors in six directions, two synchronous dynamic
random access memories (SDRAMs), and one FPGA
(Xilinx Spar-tan3 XC3S4000). Vocalise’s scalable design
allows us to change the number of VSes to fit the
operational scale. An FPGA board used to control
Vocalise is connected to the host CPU through a
Peripheral Component Interconnect (PCI) slot, which can
easily realize large-scale calculations requiring a large
number of circuits.

Figure 4. Overview of Vocalise

 Journal of Computer Sciences and Applications 5

3.3. Feature Learning / Image Recognition
System

Figure 5 shows the an overview of a recognition system
as it learns feature regions by using Vocalise. Learning
and recognition processes utilize the same hwNet because
recognition processes can reuse a feature-region learning
(FRL) circuit’s distance calculation circuit (Section 3. 4.
1), which is loaded as an hwNet. However, the input data
must be changed when reusing a learning circuit as a
recognition circuit. We accomplish this by using two
different kinds of hwNet encapsulation: feature learning
hwObject and image recognition hwObject.

Figure 5. Overview of a feature learning / image recognition system and
its processing flow

The learning flow is as follows:
1: A user pushes the learning start button.
2: The learning / recognition management swObject

commands the feature learning hwObject to start learning.
3: The hwObject transmits input images to SDRAMs

(when the system is loaded into a mobile system, we
implement an hwNet that transmits the input from a
camera attached to the mobile system).

4: The hwObject commands the first learning /
recognition hwNet to start.

5: The hwNet starts to learn (i.e., acquires templates
and feature regions).

6: The hwNet sends input image IDs, child node IDs,
and a start signal to an hwNet of the next layer.

7: The hwNet writes templates to SDRAMs.
8: The hwNet transmits node IDs and a learning end

signal to the feature learning hwObject.
9: The hwObject reads the templates from the target

SDRAM.
10: The swObject gives each template a file name (i.e.,

a node ID).
11: Repeat steps 5–10 in the hwNet of the next layer.

Only the first node receives a start signal from a
hwObject (step 4), and hwNets give direct commands (e.g.,
start signals) to the remaining nodes, thus avoiding
communication bottleneck between hardware and
software.

The recognition flow is as follows:
1: A user pushes the recognition start button.
2: The learning/recognition management swObject

commands the image recognition hwObject to start
recognizing.

3: The hwObject transmits templates to an SDRAM.
4: The hwObject commands the first

learning/recognition hwNet to start.
5: The hwNet starts to recognize (i.e., acquires the

template and position when maximum similarity to an
input image occurs.

6: The hwNet transmits an input image ID, node IDs,
and a start signal to a learning/recognition hwNet of the
next layer.

7: The hwNet transmits its node ID, the template and
position (that are acquired in step 5) to the image
recognition hwObject.

8: Repeat steps 5–7 in hwNets of the next layer.
9: A learning/recognition management swObject unifies

matching results and controls the weight of the evaluation
function.

As the proposed system executes heavy processes with
hardware, it can execute complicated processing with
software. For example, we can add processing to avoid
collisions or to emit sounds of caution after executing
tree-structured template matching and recognizing an
obstacle. Thus, one advantage of hw/sw complex systems
is that it is easy to apply recognition systems to them.

3.4. Feature-Region Learning Unit
This section describes the Feature Region Learning

(FRL) circuit (shown in Figure 6) and its implementation
on Vocalise.

Figure 6. Overview of the FRL circuit

3.4.1. Feature-Region Learning (FRL) Circuit
Feature-region learning is tree-structured processing.

The FRL circuit is in charge of processing the tree-
structured node unit and consists of the SOM circuit and
the feature-region search (FRS) circuit.

First, images are input to the SOM circuit for acquiring
templates. Then, the FRS circuit acquires feature regions
based on the templates and sends feature regions to nodes
in the next layer. Learning narrowed-down feature regions
step-by-step in this way, hierarchically from low-

6 Journal of Computer Sciences and Applications

resolution to high-resolution layers, creates a tree-
structured feature template.

3.4.2. The SOM Circuit
Figure 7 shows the an overview of the SOM circuit,

which is connected to both the FRS circuit and the FPGA
Internal Bus (FIB). In-Img Port is a port for reading input
images, and RefVec Port is a port for writing reference
vectors. The SOM Unit STT carries out overall sequence
processing in this architecture. SOM Core takes charge of
calculating the distance between an input vector and
reference vectors as well as updating reference vectors in
the SOM learning. The same number of processing
elements (called SOM PEs) as there are reference vectors
execute parallel distributed processing.

Figure 7. Overview of the SOM circuit and its processing flow

First, loaded images are sequentially written to the
block random access memory (BRAM) and distributed
RAM; they are then input into SOM Core by the InImg
Buf Controller and Rect CutOut Adrs Creator. Reference
vectors are written to the host PC’s main memory from
the buffers in SOM Core after the learning iteration
finishes. The SOM circuit that has finished the learning
iteration transmits the acquired templates and also inputs
images to the FRS circuit. After the FRS circuit finishes
calculating feature regions, the feature regions are
returned to the SOM circuit. These feature regions,
NextIn-ImgIndex, and NextSOMIndex are sent to the next
FRL circuit (NextSOMIndex is an index that indicates
which SOM (node) in the next layer should be trained
using the images that have been learned by the present
SOM).

3.4.3. The Feature Region Search (FRS) Circuit
An FRS circuit is a circuit that acquires feature regions.

Figure 8 shows an overview of the FRS circuit, which
consists of ImgParaIn, FRSCore, and Filter.

Figure 8. Overview of the FRS circuit

Figure 9 shows the processing flow of the FRS circuit.
First, templates that are learned by the SOM circuit are set
in a buffer. The pixels of input images sent from the SOM
circuit are input to ImgParaIn. ImgParaIn outputs different
sub-regions to 17 PEs in FRSCore. Each PE in FRS Core
calculates the inner product between a template and an
input image and the variance of the inner product values.
The calculated variances are passed through Filter to
determine high-variance regions (regions where the
variance is higher than a certain threshold) and low-
variance regions (regions where the variance is lower than
a certain threshold), which are then output to the SOM
circuit.

Figure 9. Processing flow of the FRS circuit

3.4.4. Implementation of FRL Circuits on Vocalise
The merit of using Vocalise (which is an FPGA array)

is that it can build the most suitable processing elements
and placement structure. The proposed system executes
four-layer feature-region learning to make four child
nodes and 85 nodes. Figure 10 shows the node placement
on Vocalise. The address z-y-x in the figure corresponds
to the address of Figure 4.

Figure 10. Processing flow of the FRS circuit

We assign the processing of n-th layer to the board of
address z=n-1 and utilize Vocalise in the three dimensions.
We place one node on a VS in the first layer and four
nodes on a VS in the second and subsequent layer.
Vocalise Communication (VC) Bus realizes communication
between software and a node, and Vocalise Internal (VI)
Bus realizes communication between adjacent nodes. In
this way, parallel processing in the same layer and
pipeline processing in different layers are possible,

 Journal of Computer Sciences and Applications 7

increasing the parallel degree to 85 (the total number of
nodes).

3.5. Image Recognition Unit
Figure 11 shows an overview of the image recognition

unit, which uses a tree-structured feature region template
that has been learned. Searching the paths of a tree-
structured template determines the optimally matched
templates (i.e., the optimal solution). Evaluation of each
template is executed by tree-structured nodes (the FRL
circuit’s distance calculators and comparators are diverted
to recognition). The calculated result in each node is
weighted; the whole weighting process becomes the
evaluation function. Plural optimal paths are found by
searching not only the best matched templates but also the
2nd best matched templates (and of course, the 3rd, 4th,
and so forth can also be acquired), which allows sufficient
feature points.

Figure 11. Tree-structured template matching

Figure 12. Time charts of the SOM circuit, FRS circuit, and FRL circuit

4. Performance Evaluation

4.1. Performance of the FRL Circuit
Figure 12 shows the time charts of the SOM circuit,

FRS circuit, and FRL circuit. The SOM circuit can
perform at least 16 times better than sequential processing
due to having 16 PEs perform parallel computation of
distance calculations and update operations. The FRS
circuit can perform at least 17 times better than sequential
processing due to having 17 PEs perform parallel
computation of 17 sub-regions.

We evaluated the performance of the FRL circuit. Table 1
shows results from the register transfer level (RTL)
simulation by Veritak (verilog simulator), from a
conventional software-only method, and from actual
machine operation by hwModule VL (beginning from the
time the software sends a start signal to the circuit to the
time the software receives an end signal from the circuit).

Table 1. The FRL Circuit Unit’s Processing Speed When Learning
RTL simulation [ms] Software[ms] Actual operation[ms]

4.7 3.2×102 16

Evaluation conditions will be described when we
discuss performance evaluation. One hundred images and
16 pixels (feature region size) from each input image were
used; the pixels of an input image were 4 × 4 in the first
layer, 8 × 8 in the second layer, 16 × 16 in the third layer,
and 32 × 32 in the fourth layer and the resolutions are
made by wavelet transform. The SOM’s map size was 16,
its iteration limit was 2000, the number of PEs was 17,
and the number of templates was 4. Few pixels from each
image were used because we used images that had been
compressed by wavelet transform. In future, we will
regard the input region of images as an interest region; this
may expand the region for learning.

A compiler of turbo C++ 2006 compiler, Intel Core i7
(4 GHz) CPU (one core), and Windows 7 (32bit) OS were
used in the software’s processing. In the RTL simulation,
we assumed a circuit operation frequency of 66 MHz. In
addition, the hwModuleVL used for actual machine
operation was the FPGA board that is accessible to the
host CPU through a PCI slot. The FRL circuit is supposed
to be implemented on the hwModuleVS of Vocalise, but
instead hwModuleVL was used for the experiment; its
operation frequency was 33 MHz.

The result from the actual machine operation was
approximately 3.4 times poorer than the simulation result
(shown in Table 1).

The first cause of delay in the actual machine operation
was an operation frequency was of 33 MHz (compared to
the 66 MHz assumed in the RTL simulation) that occurred
due to the critical path in the circuit. The second cause of
delay was a communication bottleneck between the
hardware and software. We believe the actual processing
performance could be closer to simulation results if circuit
optimization were conducted.

In addition, the processing performance acquired by
simulation was 68 times than that obtained by using a
conventional software method. The processing
performance acquired by actual machine operation of our
proposed system was 20 times better compared to the
software method. However, because we believe that
machine operation can achieve performance nearer to

8 Journal of Computer Sciences and Applications

simulation results (as stated above), we assume the
simulation performance as the processing performance of
the FRL circuit unit when we evaluate the performance of
the proposed system in the next section.

4.2. Performance of the Feature-Region
Learning with Vocalise

Vocalise’s SDRAM access, VI Bus, and VC Bus are
thought to cause bottlenecks in the proposed method.
Figure 13 shows an estimate of the bottlenecks. Note that
wait states of (a) – (d) occurs at each VI Bus, VC Bus, and
SDRAM of Vocalise. Figure 13 (a) and (b) show VI Bus’s
communication bottlenecks when nodes send input data to
other nodes in the lower layer via a connector. Figure 13(c)
shows SDRAM’s access bottlenecks when nodes read
input data and write results. Figure 13(d) shows VC Bus’s
communication bottlenecks when a host CPU reads results
from SDRAMs on hwModuleVSes.

Figure 13. Estimate of bottlenecks in the proposed system

Table 2. Feature-Region Learning Delays (Wait Times) with
Vocalise

 The number of clock cycles[clk] Time [sµ] Cause
Delay 1 225 3.4 a
Delay 2 192 2.9 c
Delay 3 225 3.4 b
Delay 4 57 0.86 a
Delay 5 192 2.9 c
Delay 6 192 2.9 d
Delay 7 225 3.4 b
Delay 8 15 0.23 a
Delay 9 192 2.9 c

Delay 10 960 14 d
Total Delay 2473 37

Table 2 shows an estimate of the critical path delay
using the tree structure shown in Figure 13(e). The total
delay is 37 sµ . Template transfer to software (d) causes
the worst bottleneck, possibly because the number of
nodes increases in the lower layers, thus lengthening the

wait time. One way to remove a bottleneck is to increase
the number of VSes to increase communication links. We
believe bottlenecks can be improved depending on how
Vocalise is used.

The proposed method’s processing speed is shown
below. Theoretically, every node processing in the same
layer can be processed in parallel. Therefore, the time
required for completing the whole process is 4 (the
number of layers) × TFRL (the processing time of the FRL
circuit unit). On the other hand, in the case of sequential
processing done by software, the total processing time is
85 (the number of nodes) × TFRL. Hence, we can estimate
the performance of the proposed method as shown in
Table 3. The proposed method can increase software’s
learning speed by 1.4 × 103. Thus, we see that the
proposed method is able to realize real-time processing,
but the software method is not. In addition, after roughly
estimating the recognition speeds on the basis of the tree-
structured template (of 16 pixels) and input images (of
four resolutions: 80 × 60, 160 × 120, 320 × 240, and 640 ×
480) when searching for the first and second best matched
templates, the proposed system is 13 times faster than the
software method.

Table 3. Comparison of Processing Speeds for the Proposed System
and a Software-Only Method

 Proposed system[ms] Software[ms]

Learning 19 2.7× 104

Recognition 5.7 78

There are several reasons why the recognition unit
results in less performance enhancement than does the
feature learning unit.

First, the recognition algorithm (which uses coarse-to-
fine template matching) does not require high computational
power when compared with the learning algorithm
because it searches only narrowed-down regions of input
images and does not require much iteration compared to
the learning algorithm.

Second, to search regions, the recognition unit has to
cut out regions of input images many more times when
compared with than the learning unit and doing so is not
designed for efficient processing (i.e., in parallel). Of
course, the FRS circuit is designed to quickly search
regions, but it is specialized for feature-region searches,
which means that we cannot disperse this module to the
recognition unit; at this time only the FRL circuit’s SOM
circuit is thus dispersed. With the SOM circuit, inputting
cut out regions is sequentially processed, which we
believe impedes the system. The recognition unit’s
processing time could be accelerated if we change the
circuit to process search regions in parallel as pipeline
processing is often done for block matching.

Third, the recognition unit utilizes fewer resources
when compared with SOM. The recognition unit requires
15 nodes when searching for the first and second best
matched templates; however, the SOM learning unit
requires 85 nodes. However, when more feature points are
needed, you can process up to 85 feature points (the
number of nodes) can be used simultaneously by the
recognition unit because up to 85 nodes can be used for
parallel processing. Use of the recognition unit is thought
to be much faster than use of software when more feature
points are needed.

 Journal of Computer Sciences and Applications 9

4.3. Performance of Mobile Systems
The proposed method utilizes 22 hwModuleVSes. As

the Xilinx FPGA in the VS has 4 million system gates
(55000 slices), it is thought that the proposed method’s
becomes 88 million system gates (1210000 slices). These
numbers suggest that large-scale circuits are indispensable
to real-time learning, and, indeed, we see that the robot on
which we implement our proposed method requires an
enormous circuit scale. We implement the proposed
method on Vocalise, which is loaded on our robot as
shown in Figure 14. We call the robot Vocalibot. The
circuit scales of the whole processes required by Vocalibot
are shown in Table 4, which is a partly modified version
from the table presented in [14]. The Leg Control and
Arm Control circuits generate pulses to control the
stepping and servo motors, respectively, installed on
Vocalibot. The Stereo Distance circuits preprocess images
from cameras to acquire the information required to
execute triangulation. The Voice Recognition circuit
preprocesses voice data mainly by wavelet transform and
executes continuous and pipelined template matching to
recognize phonemes (which are the smallest unit of
speech). The Voice Synthesis circuit consists of a large
number of shift registers and simulates voice waves that
propagate in the human vocal tract. The Video Codec
circuit compresses video by motion estimation that is
realized by block matching circuits with a Single
Instruction Multiple Data (SIMD) structure. The
Transmission Control Protocol / Internet Protocol
(TCP/IP) Stack circuit executes pipeline processing of the
TCP/IP processing required for internet communication.
The Video Codec circuit and the TCP/IP Stack circuit
compose the Internet Booster to accelerate Web
applications such as Skype [18].

Figure 14. Vocalibot

Table 4. Circuit Scale of Brain Processes for Vocalibot
Brain Process Size of Circuit (Slices)

 Current Expected
Leg Control Wheel Control 4000 4000

 Arm Control 3000 15000
Image

Recognition Stereo Distance 1200 4000

 Image Learning
Recognition 27500 1210000

Voice Recognition 15200 15200
Voice Synthesis 25400 76220

Video Codec 13000 13000
TCP/IP Stack 8300 41500

Total 97600 1378900

Vocalibot will utilize about 30 VSes in total and its
total circuit scale is estimated to be 1.4 million slices. A
system with circuit-scale scalability like Vocalise is
indispensable to a robot, and robots need to be connected
to a large number of sensor circuit boards such as camera
drivers and motor drivers. We believe that FPGA arrays,
which provide more IO connectors than CPU/GPU, are
better suited for robots. Some FPGAs have much higher
capacities than the ones used in this study, and the
proposed algorithm can be implemented on any of them.
However, while this allows for a more free pipelined
structure (because the inside of the FPGA can be freely
programmed), the design becomes flat (i.e., 2D). The 3D
FPGA, Vocalise enables us to build circuit structures the
same way we would assemble blocks, which saves us the
trouble of thinking about 3D algorithms while working in
a lower dimension.

Furthermore, even high capacity FPGAs will not
provide sufficient logic capacity if the number of layers
and PEs increases. Also, when considering robots, we
believe that utilizing plural FPGA board is important for
securing the number of input/output (IO) connectors,
which is why we believe that there is merit in the Vocalise
implementation. Building Vocalise with high capacity
FPGAs would definitely be even better because, in that
case, there would be no need for circuit scale awareness,
which is a disadvantage of FPGA implementation. Doing
so would also improve development speeds because naive
FPGA implementation is possible. However, under
current conditions, cost becomes an important factor when
choosing which type of FPGA to use because high
capacity FPGAs are very expensive.

Power consumption is another important factor to
consider. Frequent battery charges for mobile systems is
not possible outside, which means that, practically
speaking, low-power systems are required. In terms of
power consumption, we believe that a system with
Vocalise is effective. Such a system’s performance per
FPGA watt is 25 times better than that of a CPU/GPU
system, according to the joint research of Swiss university
ETH Zurich and Xilinx [19]. The system’s power
consumption performed similarly when compared with
that of the HOG and Viola–Jones method [5,20].

The power consumption of hwModuleVS and CPU are
reported in [21] and shown in Table 5. The operating
consumption of 22 VSes in the proposed system is
estimated to be 74.8 W when we assume that the FRL
circuit's power consumption is the same as that of the
Poisson equation circuit. We see that the operating
consumption of Vocalise is 2.4 times more that of a single
CPU.

Table 5. Power Consumption When Calculating the Poisson
Equation

 Standby [W] Operating [W]
hwModuleVS × 1 2.2 3.4

CPU × 1 - 31.8
In addition to robots, our system can be implemented

for use in high-speed mobile systems such as cars. A
mobile system running at 100 km/h moves approximately
at 30 m/s. It is thought that the proposed system can
handle recognition processing, including post-processing,
at around a few seconds. In other words, our proposed
system demonstrates high performance that an object 30 m

10 Journal of Computer Sciences and Applications

away can be recognized, and post-processing (e.g.,
collision avoidance) can be completed before accidents
occur. Such high performance cannot be achieved without
hardware preprocessing.

5. Conclusion
We propose an image recognition system that learns

feature regions using the FPGA Vocalise for use with
mobile systems, and show that the proposed system can be
easily designed at the abstraction level of object-oriented
design by using an hw/sw complex system. In addition,
we show that reusing the circuit is as easy as application
of the recognition system. The results of the RTL
simulation of the FRL circuit show that the learning speed
of one node in the tree structure is 68 times faster than the
learning speed obtained with software. We also show that
we can freely connect an FRL circuit to another FRL
circuit via VI Bus and that this enables accelerated
pipeline processing. The learning speed of the proposed
method is estimated to be 1.4 × 103 times faster than that
obtained with software, and the recognition speed is 13
times faster. Furthermore, we demonstrate that it is
suitable for mobile systems to implement intellectual
processing on FPGAs in terms of circuit scale and power
consumption.

In the future, we will evaluate the proposed system as it
actually operates. In addition, we will conduct combined
operations of vehicle control and image learning by
loading the proposed system onto the Vocalibot we are
still developing. Furthermore, we will conduct
experiments to confirm that the proposed system can learn
scenic features—in other words, that obstacles in passing
scenes may be learned the same way that feature regions
such as noses and chins in facial images can be
automatically learned through feature-region learning.

Acknowledgement
Portions of the research in this paper use the FERET

database of facial images collected under the FERET
program, sponsored by the DOD Counterdrug Technology
Development Program Office. The authors would like to
thank Enago (www.enago.jp) for the English language
review.

References
[1] P. Viola and M. Jones, “Robust real-time face detection,” in IEEE

International Conference on Computer Vision, vol.2, p.747, 2001.
[2] Y. Freund and R. E. Schapire, “A decision theoretic generalization

of on-line learning and an application to boosting,” Journal of
Computer and System Sciences, No. 1, Vol. 55, pp. 119-139, 1997.

[3] J. P. Harvey, “Gpu acceleration of object classification algorithms
using nvidia cuda,” Master's thesis, Rochester Institute of
Technology, Rochester, NY, Sept. 2009.

[4] Dalal, N.; Triggs, B., “Histograms of oriented gradients for human
detection,” in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, vol.1, no., pp.886, 2005.

[5] Ma, X.; Najjar, W.A.; Roy-Chowdhury, A.K., “Evaluation and
Acceleration of High-Throughput Fixed-Point Object Detection on
FPGAs,” IEEE Transactions on Circuits and Systems for Video
Technology, vol.PP, no.99, pp.1, 1, 2014.

[6] K. Kudo, Y. Myokan, W. C. Than, S. Akimoto, T. Kanamaru, and
M. Sekine, “Hardware object model and its application to the
image processing,” IEICE Trans. Fund.

[7] M. Yokokawa, I. Sudo, T. Yuno, M. Sekine, “Face detection with
the union of hardware and software,” IEICE Tech. Rep, Vol.106,
No.453, pp.13-18, Jan 2007.

[8] Y. Usami, H. Kotaki, K. Takahashi, M. Sekine, “The voice
recognition circuit by using hardware and software complex”,
IEICE Tech. Rep, EA2007-112, pp.1-6, 2008.

[9] Y. Ogishima, J. Li, S. Yokota, H. Kubo, M. Sekine, “Voice
Recognition System using hw/sw Complex,” IEICE Tech. Rep,
RECONF2014-43, vol.114, no.331, pp.51-56, Nov 2014.

[10] H. Kubo, J. Li, S. Yokota, Y. Ogishima, M. Sekine, “Mobile robot
system based on hw/sw Complex System using 3D FPGA-Array
System “Vocalise””, IEICE Tech. Rep, RECONF2014-37, vol.114,
no.331, pp.19-24, Nov 2014.

[11] M. Sekine, T. Kanamaru, H. Ito, “Multi-level Matching for
Detecting Faces”, J. IEICE, Vol.J86-A, No.9, pp.969-973, Sep
2003.

[12] T. Yuno, I. Sudo, M. Yokokawa, R. Sato, K. Kudo, M. Sekine,
“Self-Organizing Map Algorithm that used Base Vector”, IEICE
Tech. Rep, Vol.106, No.428, pp.1-6, Dec 2006.

[13] M. Ariizumi, B. Ogasawara, H. Tamukoh, M. Sekine, “An Image
Recognition System with Hierarchical Feature Learning Function”,
IEICE Tech. Rep, VLD2011-95, vol.111, no.397, pp.25-30, Jan
2012.

[14] B. Ogasawara, S. Yokota, H. Tamukoh, M. Sekine,
“Implementation of an Image Recognition System with
Hierarchical Feature Learning Function,” IEICE Tech. Rep,
RECONF2012-60, vol.112, no.325, pp.77-82, Nov 2012.

[15] S. Yokota, B. Ogasawara, M. Sekine, “A Method for Learning
Multi-resolutional Feature Regions”, Workshop on Circuits and
Systems 26, pp.524-529, Jul 2013.

[16] P.J. Phillips, H. Wechsler, J. Huang, P. Rauss, “The FERET
database and evaluation procedure for face recognition
algorithms, ” Image and Vision Computing J, Vol. 16, No. 5, pp.
295-306, 1998.

[17] P.J. Phillips, H. Moon, S.A. Rizvi, P.J. Rauss, “The FERET
Evaluation Methodology for Face Recognition Algorithms,” IEEE
Trans. Pattern Analysis and Machine Intelligence, Vol. 22, pp.
1090-1104, 2000.

[18] Hakaru Tamukoh, Kentaro Hanai, Ryosuke Kurogi, Soichiro
Matsushita, Masashi Watanabe, Yuichi Kobayashi, and Masatoshi
Sekine, “Internet Booster: A Networked Hw/Sw Complex System
and Its Application to Hi-Performance WEB Application,” Proc.
of World Automation Congress (WAC2010), 7th International
Forum on Multimedia and Image Processing, 6 pages in CD-ROM,
Sep., 2010. Kobe.

[19] Xilinx, “SDAccel Development Environment,” Available:
http://www.xilinx.c tools/sdx/sdaccel.html. [Accessed Dec. 26,
2014].

[20] Hefenbrock, D.; Oberg, J.; Nhat Thanh; Kastner, R.; Baden, S.B.,
“Accelerating Viola-Jones Face Detection to FPGA-Level Using
GPUs, ” 18th IEEE Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), vol., no.,
pp.11,18, 2-4 May 2010.

[21] Y. Atsumari, J. Li, H. Kubo, H. Tamukoh, M. Sekine, “A 3D
FPGA-Array HPC System “Vocalise” and its Performance
Evaluation, ” IEICE Tech. Rep, Vol.112, No.321, pp.201-206,
Nov 2012.

