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Abstract  In heterogeneous multiple query processing environments, usually the query processors depend upon 
estimated database cardinalities when evaluating the cost of the query plans. In this paper it is being projected to 
retrieve query plans along with their costs and fitness values by applying join selectivity techniques for relations 
used in query processing by applying genetic algorithm techniques. It has also been aimed to see that whether the 
evaluation of selectivity factor of sub query operation may be feasible and may reduce the total query cost. 
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1. Introduction 
Join indexes are database indexes that facilitate the 

processing of join queries in large databases. To provide 
more efficient join operations, join index may be 
necessarily used. A join index is a relation of arity two. 
The tuple identifiers of the tuples of the relations 
participating in a join are usually concatenated with the 
tuples. These augmented relations are joined and the 
resulting relation is then projected on the tuple identifiers. 
Usually join selectivity may improve the performance of 
database queries by giving the desired optimizer more 
accurate information about the allocation of data in 
databases. In this situation, the role of the query processor 
is to decide how to execute a query in the most efficient 
manner attempting to minimize the I/O. To accomplish 
that, the processor considers different ways of joining 
results from various databases and different methods of 
retrieving the data. The result of the optimization process 
is known as query strategy. The choice of query strategy 
depends on its cost based on estimating the number of 
disk I/O operations. In general, usually the query 
processor performs better result in implementation of 
query strategies. It is well understood that the selectivity 
may be used to predict cardinality of the databases, and 
the predicted cardinality is used to estimate I/O cost. It is 
also known that the execution of a query processor may be 
divided into a static or dynamic phase. In static phase, the 
role of the query processor is to select the query strategy 

with optimality, whereas in dynamic phase, the query 
processor processes several competing indices.  

2. Problem Analysis with Example  
Consider two relation scheme, R and S. The join index 

for RXS (R.A=S.B) will only consist of tuples with the 
tuple identifier of relation R and S that participate in this 
natural join. A join index is useful for joins that have to be 
performed often. The number of tuples in the join index 
for RXS is equal to the cardinality of the join, |RXS|. The 
size of the tuples in a join index depends on the size of the 
tuple identifiers. The join selectivity of a relation R in a 
natural join with a relation S is the ratio of the distinct 
attribute values for the same attribute in the relation R. 
Usually in general processing strategies, selection 
operation is performed as early as possible. Selection 
reduces the subsequent processing time. After that number 
of unary operations if any are combined. Then the 
Cartesian product with a certain subsequent selection is 
converted into join. After computing common expressions, 
it is required to preprocess the relations. 

While considering theta join, where two entities are 
joined not on the relationship exist between them but 
explicitly specifying some other field, it is seen that, no 
primary key, foreign key relationship in database level is 
there. But in natural join, it is almost similar to equi join. 
Here the join predicate arises implicitly by comparing all 
attributes in both relations that have the same attribute 
names in the joined relations. The resulting joined relation 
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contains only one attribute for each pair of equally named 
attributes. 

Usually sub query un nesting is always done for 
correlated sub queries with at most one relation in the 
FROM clause, which is used in ANY, ALL, and EXISTS 
predicates. 

Assume there are two relations SalesorderItems and 
Products, and the sub query may be written as follows. 
select S.* from SalesorderItems S 
where EXISTS (select * from Products P where 
S.productID=P.ID AND P.ID=300 AND P.Quantity>20); 

In the above example productID may be attribute of the 
relation SalesorderItems, ID and Quantity may be the 
attributes of the relation Products. 

Following the conversion, this same statement may be 
expressed internally using JOIN syntax: 
select S.* from Products P JOIN SalesorderItems S  
on P.ID=S.productID where P.ID=300 AND 
P.Quantity>20;  

Now consider another example of a sub query. 
select P.* from Products P 
where EXISTS ( select * from SalesorderItems S where 
S.productID=P.ID AND S.ID=2004); 

The above query contains EXISTS predicate in the sub 
query, which may match more than one row. 

If the same query may be converted to an inner join, 
with a DISTINCT in the SELECT list, it may be rewritten 
as follows. 
select DISTINCT P.* from Products P JOIN 
SalesorderItems S on P.ID=S.productID where S.ID=2004; 

Usually predicate push-down is performed for a 
predicate if and only if the predicate refers exclusively to 
the columns of a single view or derived relation. 

While optimizing the OR and IN-LIST predicates, it is 
seen that the optimizer supports a special optimization for 
exploiting IN predicates on indexed columns. This 
optimization also applies equally to multiple predicates on 
the same indexed column that are ORED together since 
the two are semantically equivalent. 

For example suppose a query may be written as follows. 
select * from salesorders where salesrepresentative=902 
OR salesrepresenatative=199; 

The query may be semantically equivalent to  
select * from salesorders where salesrepresentative 
IN(199,902); 

Usually while converting outer join to inner join, the 
optimizer generates a left deep processing tree for its 
access plans. The only exception to this rule is the 
existence of a right deep nested outer join expression. A 
left or right outer join is converted to an inner join if one 
of the following condition is true. 

i. A null intolerant predicate referencing columns of the 
null supplying tables is present in the query WHERE 
clause. 
ii. The null supplying side of an outer join returns 
exactly one row for each column from the preserved 
side. If this condition is true, there are no null supplied 
rows and the outer join may be equivalent to an inner 
join. 
Consider another query, where for each row of the 

relation Salesorder items, there is exactly one row that 
matches the relation Products. Because the productID 
column may be declared not NULL and the relation 
Salesorderitems may have the foreign key: 

“Foreignkey_productID”(“productID”) REFERNCING 
“product-ID”. 

The query may be rewritten as follows after a rewrite 
optimization. 
select * from Salesorderitems S LeftouterJoin Products P 
ON( P.ID=S.ProductID); becomes 
select * from Salesorderitems S Join Products P ON 
(P.ID=S.productID);  
select * from Products P Key Left Outer Join 
Salesorderitems S where S.quantity>15; 

The above query lists products and their corresponding 
orders for larger quantities; the Left outer Join ensures that 
all products are listed, even if they have no orders. The 
problem with this query is that the predicate in the 
WHERE clause eliminates any product with no orders 
from the result because the predicate S.Quantity>15 may 
be interpreted as false if S.Quantity is null. The query may 
be semantically equivalent to select * from Products P key 
Join Salesoredritems S where S.Quantity >15. The 
rewritten form is the query that the database server 
optimizes. 

Table 2.1. Relation scheme with size 

Sl.No. Relations Size ( KB) 

1 EMPLOYEE 100 

2 ASG 100 

3 PROJECT 100 

4 F1 58 

Sub-Query Operation A: Selectivity factor of 
selection operation on relation EMPLOYEE SFs 
(EMPLOYEE) = card (F1) Card (EMPLOYEE) SFs = 
58/100 =0.58. 

Sub-Query Operation B: Selectivity factor of selection 
operation on relation ASG SFs (ASG) = 56/100 =0.56. 

Many of the query processing strategies in distributed 
databases are static in nature i.e., the strategy is 
completely determined on the basis of a priori estimates of 
the selectivity factor of sub query operations and it 
remains unchanged throughout its execution. Due to this, 
the cardinality of intermediate fragments is large. 

Selectivity factor of various sub-query operations = 
[0.96, 0.92, 0.59, 0.48].  
For each operation, the size of intermediate fragment is 
calculated by use of prefixed selectivity values for hose 
operations. 

Sub-Query Operation 1:  

 
( )

( )
Designation 'Manager'( EMPLOYEE )

F1,  Tuples :  100 x 0.96 Ps 96

σ =

→ =
 

Sub-Query Operation 2:  

 
( )

( )
Basic _ salary 16000( ASG )

F2,Tuples :100 x 0.92 Ps 92

σ =

→ =
 

Sub-Query Operation 3: 

 
( )

( )
Designation ' Manager AND Department' ' Accounts'( EMPLOYEE )

F3,  Tuples :120 x 0.59 Ps 71

σ = =

→ =
 

Sub-Query Operation 4:  
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( )

( )
Basic _ Salary 20000 AND Basic _ Salary 27000( ASG )

F5,  Tuples :  120 x 0.48 Ps   58

σ > <

→ =
 

3. Review of Literature 
Ridhi et.al [1] have elaborated and explained the 

selectivity and cost estimation in query optimization in 
large heterogeneous databases. They have also discussed 
different types of cost formulations to evaluate the cost of 
execution plans. 

Carlo et.al [2] have proposed a method for estimating 
the size of relational query results. The approach was 
mainly based on the estimates of the attribute distinct 
values. They have also presented some experimental 
results on real databases showing the promising 
performance of analytic approach. 

Fan and Mi Xifeng et.al [3] have designed a new 
algorithm based on heuristic optimization that can 
significantly reduce the amount of intermediate result data. 
The basic idea of this algorithm was based on relational 
algebra equivalence transformations to raise the 
connecting and merging operations in the query tree. 

Gurvinder Singh et. al [4] have proposed a stochastic 
model simulating a Distributed Database environment and 
projected benefits of using innovative Genetic Algorithms 
(GA) for optimizing the sequence of sub-query operations 
allocation over the Network Sites. Also, they have 
analyzed the quality of the Genetic Parameters on 
Solutions. 

Faiza et.al [5] have proposed a statistical method for 
estimating the cardinality of the resulting relation obtained 
by relational operator by using sample based estimation 
that execute the query to be optimized on small samples of 
real database and use the results of these trials to 
determine cost estimates. 

Stratis D. Viglas et. al [6] have focused on shifting from 
a cardinality-based approach to a rate-based approach, and 
given an optimization framework which aimed at 
maximizing the output rate of query evaluation plans.  

Areerat et.al [7] have proposed Exhaustive Greedy (EG) 
algorithm to optimize intermediate result sizes of join 
queries. Most intermediate result sizes of join queries 
estimated by the EG algorithm may be comparable to the 
results estimated by the Exhaustive Search algorithm 
(ESU)which may be modified to update join graphs. 

Danh Le-Phuoc1et.al [8] have focused about query 
optimization in their paper which refers to the process of 
ensuring that either the total cost or the total response time 
for a query is minimized. Most modern cost-based 
optimizers decide between execution plans by minimizing 
the estimated cost of executing the query. A basic 
technique used in cost estimation is pre-estimation of 
Selectivity factor. 

William I.et al [9] have used an adaptive selectivity 
estimation scheme for multidimensional queries where the 
distribution of the data is not known. Their innovative 
effort overcomes the disadvantages of previously 
formulated non-adaptive, static methods which may be 
relatively inaccurate in a dynamic database. 

4. Problem Formulation 

Individual plan is represented as chromosome and 
individual task in a plan is represented as gene. Since a 
gene in a chromosome represents the plan selected for the 
query corresponding to the gene position, in the mutation 
operation the plan number is only replaced with randomly 
selected valid plan’s number for that query. Therefore a 
mutation operation always generates valid solutions. 
Different crossover operations can be applied to 
chromosomes. In our representation scheme, one point 
and multipoint crossover techniques produce valid 
solutions for the multiple query optimization problems. If 
two chromosomes are representing two valid solutions of 
the same multiple query optimization problem, then any 
crossover operation on these two chromosomes produces 
new chromosomes representing valid solutions for the 
same multiple query optimization problem. Since all 
chromosome segments that are going to be exchanged to 
produce a new chromosome represent valid plans for their 
corresponding queries, the new chromosome obtained by 
appending these segments represent a valid solution of the 
multiple query optimization problem. 

4.1. Database Statistics  
The estimation of size of intermediate results of 

relational algebra is based on statistical information about 
the base relations and formulae to predict the cardinalities 
of the result of relational sub operations. Sequence of 
operations is pre-fixed before computing cardinality of 
relations.  

No of base relations = 10  
No of operations = 7  
No of sites =3  
The size of each tuple of the relation is presumed to be 

1KB.Size of the relation is calculated as:  
Size of a relation = tuple size * number of tuples in a 

relation.  
Size of base relations = 100 KB, 100 KB,120 KB, 

120KB respectively. 
Total cost of the query = local (I/O and CPU) cost + 

communication cost.  
IO_cost is calculated in the basis of IO_speed which 

represents I/O speed coefficient of particular site where 
operation is performed and ‘i’ represents particular 
fragment generated after applying operation. This I/O cost 
is calculated for every fragment generated while executing 
query. Similarly, CPU_cost may be calculated on the basis 
of unary_IO which may be equal to unary_IO + 
IO_spd(s)* frag_size (i);  

And IO_cost for Join operations may be calculated as 
follows.  

Join_IO = Join_IO + IO_spd(s)* frag_size(i)+ 
IO_spd(s)* frag_size(i+1)+ IO_spd(s)* frag_size(i)* 
frag_size(i+1) ;  

So the total_IO_cost= (unary_IO + Join_IO); 

4.2. Experimental Analysis 
Maximum generations, max_gen=20 
Number of relations=7 
Number of queries, (query_size)=20 
Planquery( Size of Chromosome )=5 
Population=round(rand(number of queries, planquery)) 
Pc(Probability for crossover operation)=0.06 
Pm (Probability for mutation operation)=0.001 
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Cp(crossoverpoint)=round(1+rand*(planquery-1)) 
With the method described, although the number of 

genes of the chromosomes are kept for the whole 
population, it will vary according to the query that is being 
processed and the plans supplied in the feedback. 

Genetic algorithm receives an initial population 
consisting of the chromosomes corresponding to the 
relevant plans, and to the query. Selection: The genetic 
algorithm uses simple random sampling as a selection 
mechanism. This is implemented by assigning to each 
individual a selection probability equal to its fitness value 
divided by the sum of the fitness values of all the 
individuals. If after generating the population, the best 
chromosome of the previous population is no longer 
present, the worst individual of the new population is 
withdrawn, and the missing best individual is put back. 

4.3. Algorithm 
for i=1: max_gen  
planselect(i)= Queryplan(i)/(query_size *planquery); 
est_cost(i)=planselect(i)/query_size + CPU cost  
weight(i)=(Queryplan(i)*query_size)/(query_size-
Queryplan(i)); 
fitness(i)=1+(query_size*weight(i))/((weight(i)2)+(query_
size)2); 
Queryplan(i) represents chromosomes. 
Crossover point, cp=2 
Size of chromosomes=5 

Table 4.1. Query plans with cost and fitness values 
Queryplan Population Est_Cost Fitness 

7 11100 0.00405 0.5099 

9 10010 0.0040429 0.58257 

11 11010 0.0040721 0.76471 

14 01110 0.0041036 1.1622 

19 01001 0.0041214 1.2831 

23 11101 0.0041286 1.3152 

24 00011 0.0041392 1.3472 

25 10011 0.0041475 1.3727 

30 01111 0.0041727 1.3927 

 

Figure-4.1. (Query Plan VS Est_Cost of Plan) 

 

Figure 4.2. (Query Plan VS Fitness value) 

5. Discussion and Future Direction 
Selectivity estimation is the main part of query 

optimization. The selectivity factor of an operation is the 
number of tuples of an operand relation that participate in 
the result of that operation. It is denoted by SFOP, where 
OP represents the operation. The selection of the plan is 
usually based on the cost estimates of alternative plans, 
which in turn are based on the selectivity estimates of 
relational operators. Selectivity evaluation depends on 
cardinality of intermediate fragments generated in the 
query. The selectivity estimation is based on statistical 
information about the base relations and formulas to 
estimate the cardinalities of the results of the relational 
operations. 

6. Conclusion 
The main motivation in this paper is to analyze the 

effect of selectivity evaluation on the reduction of overall 
cost of the query. It has been observed that the size of 
query plans in the intermediate relations have been 
evaluated with close approximation using genetic 
algorithms. Therefore, it produced quite lesser cost of sub-
query. But when cost of all sub-query operations on the 
various sites are added, the benefits achieved in the range 
of thirty to forty percent for various sub-operations like 
selection, projection and join. 
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