
Journal of Computer Sciences and Applications, 2015, Vol. 3, No. 1, 18-22
Available online at http://pubs.sciepub.com/jcsa/3/1/3
© Science and Education Publishing
DOI:10.12691/jcsa-3-1-3

Retrieving Queries by Applying Join Selectivity along
with Various Join Mechanisms Using Soft Computing

Approach

Sambit Kumar Mishra1,*, Srikanta Pattnaik2, Dulu Patnaik3

1Department of Computer Sc.&Engg, Ajay Binay Institute of Technology, Cuttack, Odisha, India
2S.O.A. University, Bhubaneswar, Odisha, India

3Government College of Engineering, Bhawanipatna, Odisha, India
*Corresponding author: sambit_pr@rediffmail.com

Received February 25, 2015; Revised March 11, 2015; Accepted March 17, 2015

Abstract In heterogeneous multiple query processing environments, usually the query processors depend upon
estimated database cardinalities when evaluating the cost of the query plans. In this paper it is being projected to
retrieve query plans along with their costs and fitness values by applying join selectivity techniques for relations
used in query processing by applying genetic algorithm techniques. It has also been aimed to see that whether the
evaluation of selectivity factor of sub query operation may be feasible and may reduce the total query cost.

Keywords: query processing, query plans, cardinalities, join selectivity, join index, tuple, chromosome, primary
key, foreign key

Cite This Article: Sambit Kumar Mishra, Srikanta Pattnaik, and Dulu Patnaik, “Retrieving Queries by
Applying Join Selectivity along with Various Join Mechanisms Using Soft Computing Approach.” Journal of
Computer Sciences and Applications, vol. 3, no. 1 (2015): 18-22. doi: 10.12691/jcsa-3-1-3

1. Introduction
Join indexes are database indexes that facilitate the

processing of join queries in large databases. To provide
more efficient join operations, join index may be
necessarily used. A join index is a relation of arity two.
The tuple identifiers of the tuples of the relations
participating in a join are usually concatenated with the
tuples. These augmented relations are joined and the
resulting relation is then projected on the tuple identifiers.
Usually join selectivity may improve the performance of
database queries by giving the desired optimizer more
accurate information about the allocation of data in
databases. In this situation, the role of the query processor
is to decide how to execute a query in the most efficient
manner attempting to minimize the I/O. To accomplish
that, the processor considers different ways of joining
results from various databases and different methods of
retrieving the data. The result of the optimization process
is known as query strategy. The choice of query strategy
depends on its cost based on estimating the number of
disk I/O operations. In general, usually the query
processor performs better result in implementation of
query strategies. It is well understood that the selectivity
may be used to predict cardinality of the databases, and
the predicted cardinality is used to estimate I/O cost. It is
also known that the execution of a query processor may be
divided into a static or dynamic phase. In static phase, the
role of the query processor is to select the query strategy

with optimality, whereas in dynamic phase, the query
processor processes several competing indices.

2. Problem Analysis with Example
Consider two relation scheme, R and S. The join index

for RXS (R.A=S.B) will only consist of tuples with the
tuple identifier of relation R and S that participate in this
natural join. A join index is useful for joins that have to be
performed often. The number of tuples in the join index
for RXS is equal to the cardinality of the join, |RXS|. The
size of the tuples in a join index depends on the size of the
tuple identifiers. The join selectivity of a relation R in a
natural join with a relation S is the ratio of the distinct
attribute values for the same attribute in the relation R.
Usually in general processing strategies, selection
operation is performed as early as possible. Selection
reduces the subsequent processing time. After that number
of unary operations if any are combined. Then the
Cartesian product with a certain subsequent selection is
converted into join. After computing common expressions,
it is required to preprocess the relations.

While considering theta join, where two entities are
joined not on the relationship exist between them but
explicitly specifying some other field, it is seen that, no
primary key, foreign key relationship in database level is
there. But in natural join, it is almost similar to equi join.
Here the join predicate arises implicitly by comparing all
attributes in both relations that have the same attribute
names in the joined relations. The resulting joined relation

 Journal of Computer Sciences and Applications 19

contains only one attribute for each pair of equally named
attributes.

Usually sub query un nesting is always done for
correlated sub queries with at most one relation in the
FROM clause, which is used in ANY, ALL, and EXISTS
predicates.

Assume there are two relations SalesorderItems and
Products, and the sub query may be written as follows.
select S.* from SalesorderItems S
where EXISTS (select * from Products P where
S.productID=P.ID AND P.ID=300 AND P.Quantity>20);

In the above example productID may be attribute of the
relation SalesorderItems, ID and Quantity may be the
attributes of the relation Products.

Following the conversion, this same statement may be
expressed internally using JOIN syntax:
select S.* from Products P JOIN SalesorderItems S
on P.ID=S.productID where P.ID=300 AND
P.Quantity>20;

Now consider another example of a sub query.
select P.* from Products P
where EXISTS (select * from SalesorderItems S where
S.productID=P.ID AND S.ID=2004);

The above query contains EXISTS predicate in the sub
query, which may match more than one row.

If the same query may be converted to an inner join,
with a DISTINCT in the SELECT list, it may be rewritten
as follows.
select DISTINCT P.* from Products P JOIN
SalesorderItems S on P.ID=S.productID where S.ID=2004;

Usually predicate push-down is performed for a
predicate if and only if the predicate refers exclusively to
the columns of a single view or derived relation.

While optimizing the OR and IN-LIST predicates, it is
seen that the optimizer supports a special optimization for
exploiting IN predicates on indexed columns. This
optimization also applies equally to multiple predicates on
the same indexed column that are ORED together since
the two are semantically equivalent.

For example suppose a query may be written as follows.
select * from salesorders where salesrepresentative=902
OR salesrepresenatative=199;

The query may be semantically equivalent to
select * from salesorders where salesrepresentative
IN(199,902);

Usually while converting outer join to inner join, the
optimizer generates a left deep processing tree for its
access plans. The only exception to this rule is the
existence of a right deep nested outer join expression. A
left or right outer join is converted to an inner join if one
of the following condition is true.

i. A null intolerant predicate referencing columns of the
null supplying tables is present in the query WHERE
clause.
ii. The null supplying side of an outer join returns
exactly one row for each column from the preserved
side. If this condition is true, there are no null supplied
rows and the outer join may be equivalent to an inner
join.
Consider another query, where for each row of the

relation Salesorder items, there is exactly one row that
matches the relation Products. Because the productID
column may be declared not NULL and the relation
Salesorderitems may have the foreign key:

“Foreignkey_productID”(“productID”) REFERNCING
“product-ID”.

The query may be rewritten as follows after a rewrite
optimization.
select * from Salesorderitems S LeftouterJoin Products P
ON(P.ID=S.ProductID); becomes
select * from Salesorderitems S Join Products P ON
(P.ID=S.productID);
select * from Products P Key Left Outer Join
Salesorderitems S where S.quantity>15;

The above query lists products and their corresponding
orders for larger quantities; the Left outer Join ensures that
all products are listed, even if they have no orders. The
problem with this query is that the predicate in the
WHERE clause eliminates any product with no orders
from the result because the predicate S.Quantity>15 may
be interpreted as false if S.Quantity is null. The query may
be semantically equivalent to select * from Products P key
Join Salesoredritems S where S.Quantity >15. The
rewritten form is the query that the database server
optimizes.

Table 2.1. Relation scheme with size

Sl.No. Relations Size (KB)

1 EMPLOYEE 100

2 ASG 100

3 PROJECT 100

4 F1 58

Sub-Query Operation A: Selectivity factor of
selection operation on relation EMPLOYEE SFs
(EMPLOYEE) = card (F1) Card (EMPLOYEE) SFs =
58/100 =0.58.

Sub-Query Operation B: Selectivity factor of selection
operation on relation ASG SFs (ASG) = 56/100 =0.56.

Many of the query processing strategies in distributed
databases are static in nature i.e., the strategy is
completely determined on the basis of a priori estimates of
the selectivity factor of sub query operations and it
remains unchanged throughout its execution. Due to this,
the cardinality of intermediate fragments is large.

Selectivity factor of various sub-query operations =
[0.96, 0.92, 0.59, 0.48].
For each operation, the size of intermediate fragment is
calculated by use of prefixed selectivity values for hose
operations.

Sub-Query Operation 1:

()

()
Designation 'Manager'(EMPLOYEE)

F1, Tuples : 100 x 0.96 Ps 96

σ =

→ =

Sub-Query Operation 2:

()

()
Basic _ salary 16000(ASG)

F2,Tuples :100 x 0.92 Ps 92

σ =

→ =

Sub-Query Operation 3:

()

()
Designation ' Manager AND Department' ' Accounts'(EMPLOYEE)

F3, Tuples :120 x 0.59 Ps 71

σ = =

→ =

Sub-Query Operation 4:

20 Journal of Computer Sciences and Applications

()

()
Basic _ Salary 20000 AND Basic _ Salary 27000(ASG)

F5, Tuples : 120 x 0.48 Ps 58

σ > <

→ =

3. Review of Literature
Ridhi et.al [1] have elaborated and explained the

selectivity and cost estimation in query optimization in
large heterogeneous databases. They have also discussed
different types of cost formulations to evaluate the cost of
execution plans.

Carlo et.al [2] have proposed a method for estimating
the size of relational query results. The approach was
mainly based on the estimates of the attribute distinct
values. They have also presented some experimental
results on real databases showing the promising
performance of analytic approach.

Fan and Mi Xifeng et.al [3] have designed a new
algorithm based on heuristic optimization that can
significantly reduce the amount of intermediate result data.
The basic idea of this algorithm was based on relational
algebra equivalence transformations to raise the
connecting and merging operations in the query tree.

Gurvinder Singh et. al [4] have proposed a stochastic
model simulating a Distributed Database environment and
projected benefits of using innovative Genetic Algorithms
(GA) for optimizing the sequence of sub-query operations
allocation over the Network Sites. Also, they have
analyzed the quality of the Genetic Parameters on
Solutions.

Faiza et.al [5] have proposed a statistical method for
estimating the cardinality of the resulting relation obtained
by relational operator by using sample based estimation
that execute the query to be optimized on small samples of
real database and use the results of these trials to
determine cost estimates.

Stratis D. Viglas et. al [6] have focused on shifting from
a cardinality-based approach to a rate-based approach, and
given an optimization framework which aimed at
maximizing the output rate of query evaluation plans.

Areerat et.al [7] have proposed Exhaustive Greedy (EG)
algorithm to optimize intermediate result sizes of join
queries. Most intermediate result sizes of join queries
estimated by the EG algorithm may be comparable to the
results estimated by the Exhaustive Search algorithm
(ESU)which may be modified to update join graphs.

Danh Le-Phuoc1et.al [8] have focused about query
optimization in their paper which refers to the process of
ensuring that either the total cost or the total response time
for a query is minimized. Most modern cost-based
optimizers decide between execution plans by minimizing
the estimated cost of executing the query. A basic
technique used in cost estimation is pre-estimation of
Selectivity factor.

William I.et al [9] have used an adaptive selectivity
estimation scheme for multidimensional queries where the
distribution of the data is not known. Their innovative
effort overcomes the disadvantages of previously
formulated non-adaptive, static methods which may be
relatively inaccurate in a dynamic database.

4. Problem Formulation

Individual plan is represented as chromosome and
individual task in a plan is represented as gene. Since a
gene in a chromosome represents the plan selected for the
query corresponding to the gene position, in the mutation
operation the plan number is only replaced with randomly
selected valid plan’s number for that query. Therefore a
mutation operation always generates valid solutions.
Different crossover operations can be applied to
chromosomes. In our representation scheme, one point
and multipoint crossover techniques produce valid
solutions for the multiple query optimization problems. If
two chromosomes are representing two valid solutions of
the same multiple query optimization problem, then any
crossover operation on these two chromosomes produces
new chromosomes representing valid solutions for the
same multiple query optimization problem. Since all
chromosome segments that are going to be exchanged to
produce a new chromosome represent valid plans for their
corresponding queries, the new chromosome obtained by
appending these segments represent a valid solution of the
multiple query optimization problem.

4.1. Database Statistics
The estimation of size of intermediate results of

relational algebra is based on statistical information about
the base relations and formulae to predict the cardinalities
of the result of relational sub operations. Sequence of
operations is pre-fixed before computing cardinality of
relations.

No of base relations = 10
No of operations = 7
No of sites =3
The size of each tuple of the relation is presumed to be

1KB.Size of the relation is calculated as:
Size of a relation = tuple size * number of tuples in a

relation.
Size of base relations = 100 KB, 100 KB,120 KB,

120KB respectively.
Total cost of the query = local (I/O and CPU) cost +

communication cost.
IO_cost is calculated in the basis of IO_speed which

represents I/O speed coefficient of particular site where
operation is performed and ‘i’ represents particular
fragment generated after applying operation. This I/O cost
is calculated for every fragment generated while executing
query. Similarly, CPU_cost may be calculated on the basis
of unary_IO which may be equal to unary_IO +
IO_spd(s)* frag_size (i);

And IO_cost for Join operations may be calculated as
follows.

Join_IO = Join_IO + IO_spd(s)* frag_size(i)+
IO_spd(s)* frag_size(i+1)+ IO_spd(s)* frag_size(i)*
frag_size(i+1) ;

So the total_IO_cost= (unary_IO + Join_IO);

4.2. Experimental Analysis
Maximum generations, max_gen=20
Number of relations=7
Number of queries, (query_size)=20
Planquery(Size of Chromosome)=5
Population=round(rand(number of queries, planquery))
Pc(Probability for crossover operation)=0.06
Pm (Probability for mutation operation)=0.001

 Journal of Computer Sciences and Applications 21

Cp(crossoverpoint)=round(1+rand*(planquery-1))
With the method described, although the number of

genes of the chromosomes are kept for the whole
population, it will vary according to the query that is being
processed and the plans supplied in the feedback.

Genetic algorithm receives an initial population
consisting of the chromosomes corresponding to the
relevant plans, and to the query. Selection: The genetic
algorithm uses simple random sampling as a selection
mechanism. This is implemented by assigning to each
individual a selection probability equal to its fitness value
divided by the sum of the fitness values of all the
individuals. If after generating the population, the best
chromosome of the previous population is no longer
present, the worst individual of the new population is
withdrawn, and the missing best individual is put back.

4.3. Algorithm
for i=1: max_gen
planselect(i)= Queryplan(i)/(query_size *planquery);
est_cost(i)=planselect(i)/query_size + CPU cost
weight(i)=(Queryplan(i)*query_size)/(query_size-
Queryplan(i));
fitness(i)=1+(query_size*weight(i))/((weight(i)2)+(query_
size)2);
Queryplan(i) represents chromosomes.
Crossover point, cp=2
Size of chromosomes=5

Table 4.1. Query plans with cost and fitness values
Queryplan Population Est_Cost Fitness

7 11100 0.00405 0.5099

9 10010 0.0040429 0.58257

11 11010 0.0040721 0.76471

14 01110 0.0041036 1.1622

19 01001 0.0041214 1.2831

23 11101 0.0041286 1.3152

24 00011 0.0041392 1.3472

25 10011 0.0041475 1.3727

30 01111 0.0041727 1.3927

Figure-4.1. (Query Plan VS Est_Cost of Plan)

Figure 4.2. (Query Plan VS Fitness value)

5. Discussion and Future Direction
Selectivity estimation is the main part of query

optimization. The selectivity factor of an operation is the
number of tuples of an operand relation that participate in
the result of that operation. It is denoted by SFOP, where
OP represents the operation. The selection of the plan is
usually based on the cost estimates of alternative plans,
which in turn are based on the selectivity estimates of
relational operators. Selectivity evaluation depends on
cardinality of intermediate fragments generated in the
query. The selectivity estimation is based on statistical
information about the base relations and formulas to
estimate the cardinalities of the results of the relational
operations.

6. Conclusion
The main motivation in this paper is to analyze the

effect of selectivity evaluation on the reduction of overall
cost of the query. It has been observed that the size of
query plans in the intermediate relations have been
evaluated with close approximation using genetic
algorithms. Therefore, it produced quite lesser cost of sub-
query. But when cost of all sub-query operations on the
various sites are added, the benefits achieved in the range
of thirty to forty percent for various sub-operations like
selection, projection and join.

References
[1] Ridhi Kapoor, Dr. R. S. Virk, “Selectivity & Cost Estimates in

Query Optimization in Distributed Databases”, International
Journal of Enhanced Research in Management & Computer
Applications, June2013.

[2] Carlo Dell‟ Aquilla, Ezio Lefons, Filippo Tangorra, “Analytic-
based Estimation of Query Result Sizes”, 2005.

[3] Fan Yuanyuan, Mi Xifeng. “Distributed database System Query
Optimization Algorithm Research”, IEEE, 2010.

[4] Rajinder Singh, Gurvinder Singh, Varinder Pannu virk. “Optimized
Access Strategies for a Distributed Database Design”, IJDE, 2011.

22 Journal of Computer Sciences and Applications

[5] Faiza Najjar and Yahya slimani. “Cardinality estimation of
distributed join queries”. 2002.

[6] Stratis D. Viglas, Jeffrey F. Naughton. “Rate-Based Query
Optimization for Streaming Information”, ACM, 2002.

[7] Areerat Trongratsameethong, Jarernsri L. Mitrpanont, “Exhaustive
Greedy Algorithm for Optimizing Intermediate Result Sizes of
JoinQueries”, IEEE, 2009.

[8] Danh Le-Phuoc1, Josiane Xavier Parreira, Michael Hausenblas,
Manfred Hauswirth. “Continuous Query Optimization and
Evaluation Over Unified Linked Stream Data and Linked Open
Data”, DERI,2010.

[9] William I. Grosky, Junping Sun, Farshad Fotouhi. “Dynamic
selectivity estimation for multidimensional queries”, springer,
1993.

