
Journal of Computer Sciences and Applications, 2015, Vol. 3, No. 2, 33-39
Available online at http://pubs.sciepub.com/jcsa/3/2/3
© Science and Education Publishing
DOI:10.12691/jcsa-3-2-3

Genetic Algorithm Based Solution to SAT-3 Problem

Umme Aiman
*
, Nausheen Asrar

Department of Computer Science, Jamia Hamdard, New Delhi, India

*Corresponding author: aimanraza16@gmail.com

Received March 18, 2015; Revised April 03, 2015; Accepted April 16, 2015

Abstract SAT-3 is an NP-complete problem for determining whether there exists a solution satisfying a given

Boolean formula in the Conjunctive Normal Form, wherein each clause has at most three literals. Existing

approaches of this problem take exponential time and are also memory inefficient. The work uses Genetic

Algorithms for finding an optimal solution to this problem. The central idea is the intelligent exploitation of a

random search used to solve optimization problems. The work explores previous works to direct the search into

regions of better performance within the search space, thus reducing the time and space complexity. It thus

establishes the ability of Genetic Algorithms for finding optimal solutions from a huge set of solutions. The work

has been implemented and analyzed with satisfactory results.

Keywords: NP complete problem, genetic algorithm, SAT-3 problem, intraceability, optimal solution

Cite This Article: Umme Aiman, and Nausheen Asrar, “Genetic Algorithm Based Solution to SAT-3

Problem.” Journal of Computer Sciences and Applications, vol. 3, no. 2 (2015): 33-39. doi: 10.12691/jcsa-3-2-3.

1. Introduction

A boolean expression is made up of clauses. Each

clause has literals. If a clause has at most three literals

connected by disjunction, and the clauses in turn are

connected through conjunctions, the expression is that of

SAT3. The problem is a satisfiability problem. The
problem calls for finding the values of the literals that

make the given expression true. Consider an expression

where in there are n literals. Since a literal can have two

values, there can be 2n possible set of values of the given

set of literals, at each set of values; the expression needs to

be evaluated. The solution, by the above method (brute

force), therefore becomes computationally very expensive.

There is another way of handling the problem. The use

of heuristic techniques like Genetic Algorithms would

make the search of the solutions easy and hence tackle the

given problem efficiently. GAs are heuristic processes
based on the concept of survival of the fittest [1]. The

operators like crossover, mutation etc help one to achieve

the task. Many problems have been successfully solved

using GAs. The present work uses GAs to solve the SAT3

Problem.

The paper has been organized as follows. Section 2

presents the literature review, section 3 presents Genetic

Algorithm, section 4 presents NP Complete problems. In

section 5 we discuss existing approaches to SAT-3

problem; section 5.1 describes, section 5.2 states, section

5.3 presents, section 5.4 presents, section 5.5 describes. In

section 6 we present the proposed solution, section 7
presents result, section 8 presents the conclusion and

section 9 presents references.

2. Literature Review

A systematic review was undertaken to summarize the

existing approaches and their restrictions, find gaps in

current research and propose areas for further

investigation. The review has been carried out in

accordance with the guidelines proposed by Kitchenham
[2]. Table 1 presents the results of the review.

3. Genetic Algorithm

GAs works on the principle of survival of the fittest. [1]

Each generation is represented by a series of character

strings similar to the chromosome of DNA. [15] Each

individual is a point in the search space. [16] They are

then made to go through a series of evolutionary processes.

The individuals compete for resources. Genes from

successful individuals propagate throughout the
population, making successive generations more suited to

their environment.

After an initial population is randomly generated, the

algorithm evolves through three operators:

Selection- equates to the survival of the fittest;

Crossover- represents mating between individuals;

Mutation- introduces random modifications.

The main steps of GA are explained below.

Randomly generate an initial population. Each

chromosome has n cells. The population is generated by

the following algorithm:

for each chromosome
for each cell

If (random () % 2 == 0)

Cell=1

34 Journal of Computer Sciences and Applications

else

Cell=0

end if

end

end

The chromosomes generated are a combination of 0s

and 1s. A chromosome is a representation of the values

assigned to the variables.
Find out the truth value of each chromosome. The truth

value is whether the chromosome results in a “TRUE” or a

“FALSE” value for the given formula.

CROSSOVER: Randomly select two chromosomes and

break them from a randomly selected crossover point. A

third child chromosome is formed by joining the first part

of the first chromosome and the second part of the second

chromosome. Similarly a fourth child chromosome is

formed by joining the second part of the first chromosome

and the first part of the second chromosome. Now the

truth value for these two newly formed chromosomes are
found out. Crossover rate is between 2 and 5.

MUTATION: A random chromosome is selected and

one of its random bits is complemented and the truth value

is calculated. The number of mutations is given by the

formula.

No. of mutation = (No. of cells in a chromosome * No.

of chromosomes * mutation rate) / 100

The mutation rate is less than 1 and was taken as 0.5 in

our implementation. The number of TRUE value is

counted. Figure 1 shows the basic steps in GA.

Figure 1. Basic steps in GA

4. NP Complete Problem

There are basically two types of problems

• Polynomial-time problems.

• NP problems.

Polynomial-Time problems-Problems that have

algorithms with worst case running time of O(nk), where

k is a constant, are called tractable others are called

intractable or super-polynomial [17].

NP problems- Another class of algorithms that are

“verifiable” in polynomial time is called NP problems.

Any problem in P is also in NP [18].

We say that a language M, defining some decision
problem, is NP-hard if every other language L in NP is

polynomial-time reducible to M. If a language M is NP –

hard and it is also in the class NP itself, then M is NP-

complete [19].

Thus, an NP –complete problem is, in a very formal

sense, one of the hardest problems in NP, as far as

polynomial-time computability is concerned. If anyone

finds a deterministic polynomial-time algorithm for even

one NP-complete problem, then P=NP. [19] Figure 2

shows the relation of complexity classes.

Figure 2. Relation of Complexity Classes

Definition: A Boolean formula is in 3SAT if it is in

3CNF form and is also satisfiable. A Boolean formula is

in 3CNF if it is of the form

C1∧C2∧•••∧C3

Where, each Ci is an “AND” of three or less literals.

[20].

5. Existing Approaches To SAT3 Problem

5.1. Brute Force Algorithm

The simplest but also the most time consuming idea.

The main approach is to try every possible valuation until

a satisfying one is found or there are no more valuations

left. It is guaranteed to find a solution but has a slow run-

time performance [21].

Implementation of this algorithm involves taking a

number of variables and the Boolean function as input
from the user. Then a 2D array is used as the data

structure to store all the possible 2n combinations of

values of all the variables. Then each row of the 2D array

is used to insert values of variables in the given Boolean

function to check its satisfiability, thus in a worst case

scenario, all the possible combinations are tried until the

solution is obtained.

Complexity-This approach works well for small inputs

i.e. Small no of variables and simple functions. But since

it is exponential in nature, its run-time complexity is O (2n)

in the worst case. Thus, when the number of variables
becomes large the algorithm fails to find optimal solution

within practical time limit.

 Journal of Computer Sciences and Applications 35

Table 1. Literature Review

S.

No
Problem Proposed solution Conclusion

1.

N-puzzle problem –

It involves having a set dimension of puzzle space (usually 3x3 for an 8-

puzzle) and denoting the dimensions as N being the columns and M being the

rows. In the puzzle space, there is a random arrangement of cells/blocks, with

one empty space that enables adjacent cells/block to slide into them. Since the

pieces are square blocks, only the top, bottom, left and right blocks adjacent to

the empty space may slide into its place. The cells can either be numbered or

printed with a fragment of the whole picture that the rearranged puzzle should

show. [3]

GA is used. Index

determination and

threshold determination

are done during the

process.

• GA based approach results in

better time complexity than the

existing ones.

• The complexity of the GA

based algorithm is-O (log22m-

1) ~O (m-1) [4].

2.

Vertex cover problem-

Vertex cover of a graph G is a set of vertices such that each edge of G is

incident to at least one vertex in the set. The resultant set is said to cover the

edges of G. A minimum vertex cover is a vertex cover of smallest promising

size. The vertex cover number is the size of a minimum vertex cover [5].

Standard GAs was used. A

chromosome of genetic

population can serve as a

path from the initial state

to goal state.

• GA based technique generates

a very near solution to the

problem.

• It gives an optimal solution in

lesser time and lesser moves as

compared to approximation

algorithms.

• GA’s are known to be better

than randomized algorithm as

they are more robust and has

complexity very less than the

existing approaches. [6]

3.

Maximum clique problem-

Maximum clique problem finds the fully connected sub graphs from a given

graph G= (V, E) in an arbitrary connected graph where V= {1, 2,….n} is set of

vertex and E represents edges(x, y) set of G.

The maximum clique problem is to find the maximum clique in a graph[7].

GA is used.

•When the no. of vertices was

small, the solutions obtained

were accurate.

•For a large number of vertices,

optimized solutions were

obtained by applying the

process of moderation.

•Overall the resultant algorithm

has very less complexity than

other existing solutions. [8]

4.

Subset sum problem-

In the SSP, a set W of n integers and a large integer C are given. We are

interested in finding a subset S (of W) whose elements sum is closest to,

without exceeding, C.[9]

The GA is applied. The

steps involved are:-

• Sorting

• Calculate limit point

• Generate Population

• Mapping

• Calculating the sum

• Reducing the population

• Cross over

•Mutation

• Moderation [10]

• For smaller values of sum, the

GA based solution produces

accurate results of approx. 60%

of total sample space.

•In other cases, process of

moderation and Roulette Wheel

selection were employed to

enhance obtained solutions. [10]

5.

Post correspondence problem-

It is defined as a finite set of pairs of strings (gi, hi) (1<=i<=s) over alphabet

∑. A solution to this instance is a sequence of selection i1i2……in (N>=1)

such that the strings gi1 gi2…..gin and hi1, hi2…….hin formed by

concatenation are identical. The no. of pairs in a PCP instance, s in the above

is called its size[11].

Standard GA is used.

•The Application of Genetics to

randomized algorithm approach

to this problem has produced

optimal solutions for small

inputs.

•Only, in a small number of

cases, the algorithm failed to

produce satisfactory results. [12]

6.

Travelling salesman problem-

given a, collection of cities, the problem is to determine the shortest route

which visits each city precisely once and then returns to its starting point.[13]

Improved version of GAs

is applied

The algorithm

• Successfully solved problems

up to 229 cities.

• Produced optimal results for

problem up to 442 in an

acceptable time limit.

• Problems with higher no. of

cities [maximum 666 cities]

could be approximately solved

by constructing a tour with

length 0.04% over the

optimum.[14]

5.2. Davis Putnum Algorithm

The algorithm works on a propositional formula ф. ф

should be in CNF form. The algorithm treats ф as a set of

clauses that can be manipulated. It defines 3 basic

principles for obtaining the answer.

5.2.1 Unit Propagation Rule

Rule I deals with simplifying the formula for

determining satisfiability by analyzing one-literal clauses.

There are three cases to be distinguished.

Case 1: an atomic formula p occurs as a one-literal

clause in both positive and negated form. In this case the

resulting formula ф is unsatisfiable, because the empty
clause can be deduced by means of resolution.

Case 2: Case 1 does not apply and an atomic formula p

occurs as a one literal clause. Then all clauses that contain

p can be deleted and -p can be removed from the

remaining clauses.

Case 3: Case 1 does not apply and an atomic formula -

p occurs as a one literal clause. Then all clauses that

36 Journal of Computer Sciences and Applications

contain -p can be deleted and p can be removed from the

remaining clauses.

5.2.2. Pure literal Rule

It deals with redundant clauses. It is generally used as a

preprocessing step for efficiency reasons. If only p or only

-p occurs in the formula, then all clauses which contain p

or -p may be deleted.

5.2.3. Resolution Rule

Resolution can be applied to two clauses that have

complementary literals L and L’ such that L ≡ -L’. With

the help of the resolution step these two clauses can be

combined in a single clause called the resolvent that

contains all the literals without L and L’ [21].
Complexity-The fact that this is an exponential

algorithm follows directly from the fact that regular

resolution is exponential. This means that this algorithm

will generate an exponential number of clauses and thus is

very memory inefficient. The lower bound complexity of

this algorithm has been proven to be 2cn for some

constant c > 0 [21]. Figure 3 depicts the basic steps

involved in Davis Putnum Algorithm.

Figure 3. Basic steps in Davis-Putnum algorithm

5.3. Davis Logemann and Loveland

Algorithm

In this algorithm rule III of Davis Putnum Algorithm

was replaced by splitting rule in order to limit the amount

of memory used during runtime.

 The simplifying of the formula is now usually done
as a preprocessing step for efficiency reasons.

 Heuristics for the branching variable are used

 Backtracking has been replaced by back jumping or
non-chronological backtracking in iterative versions

of the DLL, so that similar parts of the same tree are

not searched over and over again. [21]

 New clauses can be ascertained during the search
process to increase the amount of branches that can

be cut away from the search tree later.

 Improvements in Boolean Constraint Propagation
algorithms are introduced.

 Random restarts of the algorithm that make use of

previously learned information increase the chances
of coming to a solution faster

 For these improvements to be efficient and also to
allow non-chronological backtracking the DLL

algorithm is usually implemented iteratively [21].

Complexity- In general, DPLL requires exponential

time (splitting rule!)! Heuristics are needed to determine

which variable should be instantiated next and which

value should be used.

DPLL is polynomial on Horn clauses, i.e., Clauses with

at most one positive literal -A1,V…V-An V B [22].

5.4. Binary Decision Diagrams (BDD)

Figure 4. Basic steps in Binary Decision Diagrams

A BDD represents a formula ф (seen as a Boolean

function) as a rooted directed acyclic graph G = (V, T, E).

Each non-terminal node or vertex v(i) ϵ V is labeled by a
variable x and has edges directed towards two successor

nodes, called the then-child and the else-child. In a

graphical representation, the then-child represents x = 1

via an uninterrupted line and the else-child represents x =

0 via a dotted line. The lines are depicted as undirected for

simplicity, but must always be considered as directed to

 Journal of Computer Sciences and Applications 37

the next node. Each terminal node t(i) ϵ T is labeled with 0

or 1 and does not have any children. For a given

assignment of the variables, the value of the function is

found by tracing a path from the root to a terminal vertex

following the branches indicated by the values assigned to

the variables [21].

Using reduced order Binary Decision Diagram a set of
satisfying assignments is created by looking at the

constraints.

The process is to continuously add clauses to an empty

BDD until the perfect pattern is described. By adding all

the constraint paths to the BDD we get the complete

representation of the function for which the satisfiability is

being checked. This method solves the problem by

building up the solution set in order to verify satisfiability.

Complexity- ROBDDs perform worse, both in terms of

space and time complexity in under constrained and

critically constrained set of problems. It only works best
in over constrained sets of problems [21]. Figure 4 shows

the steps involved in Binary Decision Diagram approach.

5.5. Set Theory

Set theory based approach decides the un-satisfiability

of a given formula. It describes the problem in set theory

and investigates what is needed to decide the un-

satisfiability of a given sat3 formula.

For a SAT3 function ф of n variables the set Vφ of

possible valuations (variable assignments) v is determined,

for which v(ф) evaluates to 1. Here v is a mapping {x0:::

xn-1} → {0,1} that instantiates every variable to 0 or 1.

So each function vi can be depicted as a unique number in

binary representation, which is in the set 2n that denotes

n-tuples over a binary alphabet {0, 1} n. If any clause that

is part of ф is unsatisfiable, then ф is also unsatisfiable.
That is, v(ci) = 0 => v(ф) = 0. Using this information, any

3-SAT formula can be proven (un) satisfiable using sets

[21].

Complexity-This solution is not computationally

possible with a high amount of clauses and takes more

time than applying brute-force approach to all 2n possible

valuations [21].

6. Proposed Solution

This work proposes Gas based solution to SAT-3
problem. The algorithm has been presented as follows.

The algorithm uses the blend of the theory of natural

selection and conventional optimization.

ALGORITHM: SAT-3 problem

1. cell->number of variables

2. expression->given Boolean formula

3. chromosome-> representation of values assigned to

the variables of given Boolean formula

4. expression_evaluate->truth value of expression

5. //initial population generation

6. for each chromosome //no. of iterations/initial

population ??
7. for each cell

8. If (random () % 100> 50)

9. cell=1;

10. else

11. cell=0;

12. end if

13. end for

14. end for

15. //count number of true values

16. for each chromosome

17. If (expression_evaluate == TRUE)

18. count++;

19. end if
20. end for

21. //crossover

22. for each chromosome-> till crossover_rate

23. chromo some 1=random () % population;

24. chromo some 2=random () % population;

25. crossover_point=random () % cell;

26. for each cell-> beginning to crossover_point

27. chromo some 3[i] = chromo some 1[i];

28. chromo some 4[i] = chromo some 2[i];

29. end for

30. for each cell->crossover_point to end
31. chromo some 3[i] = chromo some 2[i];

32. chromo some 4[i] = chromo some 1[i];

33. end for

34. end for

35. for each chromosome

36. If (expression_evaluate==TRUE)

37. count++;

38. end if

39. end for

40. //mutation

41. for each chromosome->till mutation_rate
42. mutation_point=random () % cell;

43. If (cell[mutation_point]==1)

44. cell[mutation_point]=0;

45. else

46. cell[mutation_point]=1;

47. end if

48. end for

49. for each chromosome

50. If (expression_evaluate==TRUE)

51. count++;

52. End if

53. End for

7. Results

The following tables (Table 2, Table 3, Table 4, Table 5)

show the obtained results. Due to time constraints we have

considered the case of 4 variables and 7, 8, 9 and 10

clauses. Further analysis with more number of variables

and clauses will be considered for future work.

In the following tables the first column shows the no. of

true values generated randomly when initial population is

formed.
The second column shows the Cross-over Rate. The

third column shows the number of true values generated

w.r.t the mentioned crossover rate. The fourth column

shows the Mutation Rate. Finally, The last column shows

the no. of true values generated w.r.t the mentioned

mutation rate.

Table 2 shows the results for 4 variables and 7 clauses,

Table 3 shows the results for 4 variables and 8 clauses,

Table 3 shows the results for 4 vriables and 9 clauses,

Table 3 shows the results for 4 variables and 10 clauses.

38 Journal of Computer Sciences and Applications

Table 2. 4 Variables, 7 Clauses

(#{A}||#{B}||#{C})&&(#{D}||!#{A}||#{C})&&(!#{B})&&(!#{C}||!#{A})

&&(#{A}||!#{B})&&(!#{A}||!#{B}||!#{C})&&(!#{D}||#{C}||#{A})

True Values

(Random)

Crossover

rate

True Values

(crossover)

Mutation

rate

True values

(mutation)

0 2 0 0.1 1

1 2 1 0.3 1

2 2 2 0.6 0

1 2 1 0.8 0

1 3 1 0.1 1

2 3 2 0.3 2

1 3 1 0.6 1

2 3 2 0.8 1

1 4 1 0.1 0

1 4 1 0.3 1

1 4 1 0.6 1

2 4 2 0.8 2

Table 2. 4 Variables, 8 Clauses

(#{A}||#{B}||#{C})&&(#{B}||#{C}||#{D})&&(#{C}||#{D}||#{B})&&(#{

A}||#{B}||#{D})&&(#{B}||#{D}||#{A})&&(#{A}||#{B}||!#{C})&&(!#{A}

||#{C}||#{D})&&(#{C}||!#{D})
True values

(random)

Crossover

rate

True values

(crossover)

Mutation

rate

True values

(mutation)

2 2 2 0.1 2

2 2 2 0.2 3

4 2 4 0.3 5

3 2 2 0.4 4

2 3 2 0.1 2

2 3 2 0.2 2

3 3 3 0.3 3

1 3 1 0.4 3

3 4 3 0.1 4

3 4 3 0.2 3

2 4 2 0.3 2

2 4 2 0.4 4

Figure 5. Graph showing variation in no. of solution with different

Crossover Rates

Table 3. 4 Variables, 9 Clauses

(#{A}||#{B}||#{C})&&(#{D}||!#{A}||#{C})&&(!#{B})&&(!#{C}||!#{A})

&&(#{A}||!#{B})&&(!#{A}||!#{B}||!#{C})&&(!#{D}||#{C}||#{A})&&(!

#{A}||#{B}||#{C})&&(!#{A}||#{B}||#{D})&&(!#{A}||!#{B}||!#{D})

True values

(random)

Crossover

rate

True values

(crossover)

Mutation

rate

True values

(mutation)

1 2 1 0.1 2

2 2 2 0.3 3

2 2 2 0.6 2

2 2 2 0.8 0

1 3 1 0.1 1

3 3 3 0.3 3

1 3 1 0.6 1

2 3 2 0.8 2

2 4 2 0.1 1

1 4 1 0.3 1

0 4 0 0.6 1

0 4 0 0.8 1

Table 4. 4 Variables, 10 Clauses

(#{A}||#{B}||#{C})&&(#{D}||!#{A}||#{C})&&(!#{B})&&(!#{C}||!#{A})

&&(#{A}||!#{B})&&(!#{A}||!#{B}||!#{C})&&(!#{D}||#{C}\||#{A})&&(

!#{A}||#{B}||#{C})&&(!#{A}||#{B}||#{D})&&(!#{A}||!#{B}||!#{D})

True Values

(Random)

Crossover

rate

True Values

(crossover)

Mutation

rate

True values

(mutation)

3 2 3 0.1 3

1 2 1 0.2 1

1 2 1 0.3 3

4 2 3 0.4 4

3 3 2 0.1 3

2 3 2 0.2 2

2 3 2 0.3 3

2 3 2 0.4 2

2 4 2 0.1 2

2 4 2 0.2 4

3 4 3 0.3 2

3 4 3 0.4 4

Figure 6. Graph showing variation in no. of solution with different

Mutation Rates

Figure 5 depicts the graph showing variation in no. of

solution with different Crossover Rates. Figure 6 depicts

the graph showing variation in no. of solution with

different Mutation Rates.

8. Conclusion

The paper successfully implements Gas based

algorithm for SAT-3 problem. The algorithm has been

analyzed for various crossover rates and mutation rates as

explained in the previous section. It can be seen from the
graph presented in the previous section. It can be seen

from the graph presented in the previous section that the

results are optimal for COR=3 and MR=0.3.

The extension to this work would analyze the algorithm

for a larger domain to establish the veracity of the

algorithm. It is also intended to use other artificial

intelligence based techniques and compare the results with

the above techniques.

References

[1] David E. Goldberg, “Genetic Algorithm”, Pearson Education.

[2] Barbara Kitchenham, (July 2003), “Procedures for Performing

Systematic Reviews”, Keele University Technical Report TR/SE-

0401 ISSN: 1353-7776 and NICTA Technical Report 0400011T.1

[3] Drogoul, A., and Dubreuil, C. "A distributed approach to n-puzzle

solving." Proceedings of the Distributed Artificial Intelligence

Workshop. 1993.

[4] Harsh Bhasin and NehaSingla, (August 2012),” Genetic based

Algorithm for N-Puzzle Problem”, International Journal of

Computer Applications (0975-8887), Volume 51-No. 22.

 Journal of Computer Sciences and Applications 39

[5] Eric Angel, Romain Campigotto and Christian Laforest,

Algorithms for the Vertex Cover Problem on Large Graphs.

[6] Harsh Bhasin and Gitanjali, (2012), “Harnessing Genetic

Algorithm for Vertex Cover Problem”, International Journal on

Computer Science and Engineering (IJCSE), Vol. 1, Issue 2, pp.

218-223.

[7] Naresh Kumar, Deepkiran Munjal, Modified Genetic Algorithm

for Maximum Clique Problem, International Journal of Computer

& Organization Trends-Volume 3 Issue 4-May 2013.

[8] Harsh Bhasinand Rohan Mahajan, (2013),” Genetic Algorithms

Based Solution To Maximum Clique Problem”||, International

Journal of Computer Science and Engineering, Vol. 4.

[9] Rong Long Wang, A genetic algorithm for subset sum problem,

New Aspects in Neurocomputing: 10th European Symposium on

Artificial Neural Networks 2002.

[10] Harsh Bhasin and NehaSingla, (2012),” Modified Genetic

Algorithms Based Solution to Subset Sum Problem”, (IJARAI)

International Journal of Advanced Research in Artificial

Intelligence, Vol. 1, No. 1.

[11] Ling Zhao, Notes in Computer Science Volume 2883, 2003, pp

326-344, Tackling Post’s Correspondence Problem.

[12] Harsh Bhasin and Nishant Gupta, (2012), “Randomized algorithm

approach for solving PCP”, International Journal on Computer

Science and Engineering (IJCSE),Vol. 4, Issue 1, pp. 106-113.

[13] Genetic algorithms for the travelling salesman problem: A review

of representations and operators-P Larrañaga, CMH Kuijpers, RH

Murga, I Inza…-Artificial Intelligence …, 1999-Springer.

[14] H Braun, On solving travelling salesman problems by genetic

algorithms,-Parallel Problem Solving from Nature, 1991-Springer.

[15] Lintao Zhang, Searching For Truth: Techniques For Satisfiability

of Boolean Formulas, PhD Thesis, Princeton University, 2003.

[16] Yogesh S. Mahajan, Zhaochui Fu and Sharad Malik, Zchaff 2004:

An Efficient SAT Solver, Lecture Notes in Computer Science,

2005, Volume 3542/2005, 898.

[17] www.personal.kent.edu/.../Algorithms/MyAlgorithms/.../npCompl

ete.html

[18] T.H. Cormen, C.E. Leiserson, and R.L. Rivest, “Introduction to

Algorithms”, the MIT Press, Cambridge, Massachusetts, USA,

2009.

[19] ww3.algorithmdesign.net/sample/ch13-np.pdf

[20] www.cs.umd.edu/~gasarch/TOPICS/sat/SATtalk.pdf

[21] “Solving 3-SAT”, (2012), Peter Maandag, Bachelor Thesis,

Radboud University Nijmegen.

[22] “Foundations of Artificial Intelligence, Satisfiability and Model

Construction”, Wolfram Burgard, Bernhard Nebel and Martin

Riedmiller.

[23] “Implementing the Davis-Putnam Method”, (1999), Hantao Zhang

(Dept. of Computer Science, The University of Iowa), Mark E.

Stickel (Artificial Intelligence Center, U.S.A).

[24] www.cs.ucc.ie/~dgb/courses/ai1/03-notes.pdf

[25] Algorithms for Random 3-SAT, Abraham D. Flaxman, Microsoft

Research

[26] A. Mishchenko, An Introduction to Zero-Suppressed Binary

Decision Diagrams. http://www.ee.pdx.edu/~alanmi/research/,

2001.

[27] J. M. Howe and A. King, A Pearl on SAT Solving in Prolog, In

Functional and Logic Programming, volume 6009 of Lecture

Notes in Computer Science, pages 165-174, Springer, 2010

[28] Norbert Manthey, Improving SAT Solvers Using State-of-the-Art

Techniques, Thesis, Technische Universitt Dresden (2010).

[29] Wikipedia-online encyclopedia.

[30] http://www.stumptown.com/diss/chapter2.html

