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Abstract  SAT-3 is an NP-complete problem for determining whether there exists a solution satisfying a given 

Boolean formula in the Conjunctive Normal Form, wherein each clause has at most three literals. Existing 

approaches of this problem take exponential time and are also memory inefficient. The work uses Genetic 

Algorithms for finding an optimal solution to this problem. The central idea is the intelligent exploitation of a 

random search used to solve optimization problems. The work explores previous works to direct the search into 

regions of better performance within the search space, thus reducing the time and space complexity. It thus 

establishes the ability of Genetic Algorithms for finding optimal solutions from a huge set of solutions. The work 

has been implemented and analyzed with satisfactory results. 
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1. Introduction 

A boolean expression is made up of clauses. Each 

clause has literals. If a clause has at most three literals 

connected by disjunction, and the clauses in turn are 

connected through conjunctions, the expression is that of 

SAT3. The problem is a satisfiability problem. The 
problem calls for finding the values of the literals that 

make the given expression true. Consider an expression 

where in there are n literals. Since a literal can have two 

values, there can be 2n possible set of values of the given 

set of literals, at each set of values; the expression needs to 

be evaluated. The solution, by the above method (brute 

force), therefore becomes computationally very expensive.  

There is another way of handling the problem. The use 

of heuristic techniques like Genetic Algorithms would 

make the search of the solutions easy and hence tackle the 

given problem efficiently. GAs are heuristic processes 
based on the concept of survival of the fittest [1]. The 

operators like crossover, mutation etc help one to achieve 

the task. Many problems have been successfully solved 

using GAs. The present work uses GAs to solve the SAT3 

Problem.  

The paper has been organized as follows. Section 2 

presents the literature review, section 3 presents Genetic 

Algorithm, section 4 presents NP Complete problems. In 

section 5 we discuss existing approaches to SAT-3 

problem; section 5.1 describes, section 5.2 states, section 

5.3 presents, section 5.4 presents, section 5.5 describes. In 

section 6 we present the proposed solution, section 7 
presents result, section 8 presents the conclusion and 

section 9 presents references. 

2. Literature Review 

A systematic review was undertaken to summarize the 

existing approaches and their restrictions, find gaps in 

current research and propose areas for further 

investigation. The review has been carried out in 

accordance with the guidelines proposed by Kitchenham 
[2]. Table 1 presents the results of the review.  

3. Genetic Algorithm 

GAs works on the principle of survival of the fittest. [1] 

Each generation is represented by a series of character 

strings similar to the chromosome of DNA. [15] Each 

individual is a point in the search space. [16] They are 

then made to go through a series of evolutionary processes. 

The individuals compete for resources. Genes from 

successful individuals propagate throughout the 
population, making successive generations more suited to 

their environment. 

After an initial population is randomly generated, the 

algorithm evolves through three operators: 

Selection- equates to the survival of the fittest; 

Crossover- represents mating between individuals; 

Mutation- introduces random modifications. 

The main steps of GA are explained below. 

Randomly generate an initial population. Each 

chromosome has n cells. The population is generated by 

the following algorithm: 

for each chromosome 
for each cell 

If (random () % 2 == 0) 

Cell=1 
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else 

Cell=0 

end if 

end 

end 

The chromosomes generated are a combination of 0s 

and 1s. A chromosome is a representation of the values 

assigned to the variables. 
Find out the truth value of each chromosome. The truth 

value is whether the chromosome results in a “TRUE” or a 

“FALSE” value for the given formula. 

CROSSOVER: Randomly select two chromosomes and 

break them from a randomly selected crossover point. A 

third child chromosome is formed by joining the first part 

of the first chromosome and the second part of the second 

chromosome. Similarly a fourth child chromosome is 

formed by joining the second part of the first chromosome 

and the first part of the second chromosome. Now the 

truth value for these two newly formed chromosomes are 
found out. Crossover rate is between 2 and 5. 

MUTATION: A random chromosome is selected and 

one of its random bits is complemented and the truth value 

is calculated. The number of mutations is given by the 

formula.  

No. of mutation = (No. of cells in a chromosome * No. 

of chromosomes * mutation rate) / 100 

The mutation rate is less than 1 and was taken as 0.5 in 

our implementation. The number of TRUE value is 

counted. Figure 1 shows the basic steps in GA. 

 
Figure 1. Basic steps in GA 

4. NP Complete Problem 

There are basically two types of problems 

•  Polynomial-time problems. 

•  NP problems. 

Polynomial-Time problems-Problems that have 

algorithms with worst case running time of O(nk), where 

k is a constant, are called tractable others are called 

intractable or super-polynomial [17]. 

NP problems- Another class of algorithms that are 

“verifiable” in polynomial time is called NP problems. 

Any problem in P is also in NP [18]. 

We say that a language M, defining some decision 
problem, is NP-hard if every other language L in NP is 

polynomial-time reducible to M. If a language M is NP –

hard and it is also in the class NP itself, then M is NP-

complete [19].  

Thus, an NP –complete problem is, in a very formal 

sense, one of the hardest problems in NP, as far as 

polynomial-time computability is concerned. If anyone 

finds a deterministic polynomial-time algorithm for even 

one NP-complete problem, then P=NP. [19] Figure 2 

shows the relation of complexity classes. 

 

Figure 2. Relation of Complexity Classes 

Definition: A Boolean formula is in 3SAT if it is in 

3CNF form and is also satisfiable. A Boolean formula is 

in 3CNF if it is of the form 

C1∧C2∧•••∧C3 

Where, each Ci is an “AND” of three or less literals. 

[20]. 

5. Existing Approaches To SAT3 Problem 

5.1. Brute Force Algorithm 

The simplest but also the most time consuming idea. 

The main approach is to try every possible valuation until 

a satisfying one is found or there are no more valuations 

left. It is guaranteed to find a solution but has a slow run-

time performance [21]. 

Implementation of this algorithm involves taking a 

number of variables and the Boolean function as input 
from the user. Then a 2D array is used as the data 

structure to store all the possible 2n combinations of 

values of all the variables. Then each row of the 2D array 

is used to insert values of variables in the given Boolean 

function to check its satisfiability, thus in a worst case 

scenario, all the possible combinations are tried until the 

solution is obtained. 

Complexity-This approach works well for small inputs 

i.e. Small no of variables and simple functions. But since 

it is exponential in nature, its run-time complexity is O (2n) 

in the worst case. Thus, when the number of variables 
becomes large the algorithm fails to find optimal solution 

within practical time limit. 



 Journal of Computer Sciences and Applications 35 

Table 1. Literature Review 

S. 

No 
Problem Proposed solution Conclusion 

1. 

N-puzzle problem – 

It involves having a set dimension of puzzle space (usually 3x3 for an 8-

puzzle) and denoting the dimensions as N being the columns and M being the 

rows. In the puzzle space, there is a random arrangement of cells/blocks, with 

one empty space that enables adjacent cells/block to slide into them. Since the 

pieces are square blocks, only the top, bottom, left and right blocks adjacent to 

the empty space may slide into its place. The cells can either be numbered or 

printed with a fragment of the whole picture that the rearranged puzzle should 

show. [3] 

GA is used. Index 

determination and 

threshold determination 

are done during the 

process. 

• GA based approach results in 

better time complexity than the 

existing ones. 

• The complexity of the GA 

based algorithm is-O (log22m-

1) ~O (m-1) [4]. 

2. 

Vertex cover problem- 

Vertex cover of a graph G is a set of vertices such that each edge of G is 

incident to at least one vertex in the set. The resultant set is said to cover the 

edges of G. A minimum vertex cover is a vertex cover of smallest promising 

size. The vertex cover number is the size of a minimum vertex cover [5]. 

Standard GAs was used. A 

chromosome of genetic 

population can serve as a 

path from the initial state 

to goal state. 

• GA based technique generates 

a very near solution to the 

problem. 

• It gives an optimal solution in 

lesser time and lesser moves as 

compared to approximation 

algorithms. 

• GA’s are known to be better 

than randomized algorithm as 

they are more robust and has 

complexity very less than the 

existing approaches. [6] 

3. 

Maximum clique problem- 

Maximum clique problem finds the fully connected sub graphs from a given 

graph G= (V, E) in an arbitrary connected graph where V= {1, 2,….n} is set of 

vertex and E represents edges(x, y) set of G. 

The maximum clique problem is to find the maximum clique in a graph[7]. 

GA is used. 

•When the no. of vertices was 

small, the solutions obtained 

were accurate. 

•For a large number of vertices, 

optimized solutions were 

obtained by applying the 

process of moderation. 

•Overall the resultant algorithm 

has very less complexity than 

other existing solutions. [8] 

4. 

Subset sum problem- 

In the SSP, a set W of n integers and a large integer C are given. We are 

interested in finding a subset S (of W) whose elements sum is closest to, 

without exceeding, C.[9] 

The GA is applied. The 

steps involved are:- 

• Sorting 

• Calculate limit point 

• Generate Population 

• Mapping 

• Calculating the sum 

• Reducing the population 

• Cross over 

•Mutation 

• Moderation [10] 

• For smaller values of sum, the 

GA based solution produces 

accurate results of approx. 60% 

of total sample space. 

•In other cases, process of 

moderation and Roulette Wheel 

selection were employed to 

enhance obtained solutions. [10] 

5. 

Post correspondence problem- 

It is defined as a finite set of pairs of strings (gi, hi) (1<=i<=s) over alphabet 

∑. A solution to this instance is a sequence of selection i1i2……in (N>=1) 

such that the strings gi1 gi2…..gin and hi1, hi2…….hin formed by 

concatenation are identical. The no. of pairs in a PCP instance, s in the above 

is called its size[11]. 

Standard GA is used. 

•The Application of Genetics to 

randomized algorithm approach 

to this problem has produced 

optimal solutions for small 

inputs. 

•Only, in a small number of 

cases, the algorithm failed to 

produce satisfactory results. [12] 

6. 

Travelling salesman problem- 

given a, collection of cities, the problem is to determine the shortest route 

which visits each city precisely once and then returns to its starting point.[13] 

Improved version of GAs 

is applied 

The algorithm 

• Successfully solved problems 

up to 229 cities. 

• Produced optimal results for 

problem up to 442 in an 

acceptable time limit. 

• Problems with higher no. of 

cities [maximum 666 cities] 

could be approximately solved 

by constructing a tour with 

length 0.04% over the 

optimum.[14] 

5.2. Davis Putnum Algorithm 

The algorithm works on a propositional formula ф. ф 

should be in CNF form. The algorithm treats ф as a set of 

clauses that can be manipulated. It defines 3 basic 

principles for obtaining the answer. 

5.2.1 Unit Propagation Rule 

Rule I deals with simplifying the formula for 

determining satisfiability by analyzing one-literal clauses. 

There are three cases to be distinguished. 

Case 1: an atomic formula p occurs as a one-literal 

clause in both positive and negated form. In this case the 

resulting formula ф is unsatisfiable, because the empty 
clause can be deduced by means of resolution. 

Case 2: Case 1 does not apply and an atomic formula p 

occurs as a one literal clause. Then all clauses that contain 

p can be deleted and -p can be removed from the 

remaining clauses. 

Case 3: Case 1 does not apply and an atomic formula -

p occurs as a one literal clause. Then all clauses that 
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contain -p can be deleted and p can be removed from the 

remaining clauses. 

5.2.2. Pure literal Rule 

It deals with redundant clauses. It is generally used as a 

preprocessing step for efficiency reasons. If only p or only 

-p occurs in the formula, then all clauses which contain p 

or -p may be deleted. 

5.2.3. Resolution Rule 

Resolution can be applied to two clauses that have 

complementary literals L and L’ such that L ≡ -L’. With 

the help of the resolution step these two clauses can be 

combined in a single clause called the resolvent that 

contains all the literals without L and L’ [21]. 
Complexity-The fact that this is an exponential 

algorithm follows directly from the fact that regular 

resolution is exponential. This means that this algorithm 

will generate an exponential number of clauses and thus is 

very memory inefficient. The lower bound complexity of 

this algorithm has been proven to be 2cn for some 

constant c > 0 [21]. Figure 3 depicts the basic steps 

involved in Davis Putnum Algorithm. 

 

Figure 3. Basic steps in Davis-Putnum algorithm 

5.3. Davis Logemann and Loveland 

Algorithm 

In this algorithm rule III of Davis Putnum Algorithm 

was replaced by splitting rule in order to limit the amount 

of memory used during runtime. 

  The simplifying of the formula is now usually done 
as a preprocessing step for efficiency reasons. 

  Heuristics for the branching variable are used 

  Backtracking has been replaced by back jumping or 
non-chronological backtracking in iterative versions 

of the DLL, so that similar parts of the same tree are 

not searched over and over again. [21] 

  New clauses can be ascertained during the search 
process to increase the amount of branches that can 

be cut away from the search tree later. 

  Improvements in Boolean Constraint Propagation 
algorithms are introduced. 

  Random restarts of the algorithm that make use of 

previously learned information increase the chances 
of coming to a solution faster 

  For these improvements to be efficient and also to 
allow non-chronological backtracking the DLL 

algorithm is usually implemented iteratively [21]. 

Complexity- In general, DPLL requires exponential 

time (splitting rule!)! Heuristics are needed to determine 

which variable should be instantiated next and which 

value should be used. 

DPLL is polynomial on Horn clauses, i.e., Clauses with 

at most one positive literal -A1,V…V-An V B [22]. 

5.4. Binary Decision Diagrams (BDD) 

 

Figure 4. Basic steps in Binary Decision Diagrams 

A BDD represents a formula ф (seen as a Boolean 

function) as a rooted directed acyclic graph G = (V, T, E). 

Each non-terminal node or vertex v(i) ϵ V is labeled by a 
variable x and has edges directed towards two successor 

nodes, called the then-child and the else-child. In a 

graphical representation, the then-child represents x = 1 

via an uninterrupted line and the else-child represents x = 

0 via a dotted line. The lines are depicted as undirected for 

simplicity, but must always be considered as directed to 
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the next node. Each terminal node t(i) ϵ T is labeled with 0 

or 1 and does not have any children. For a given 

assignment of the variables, the value of the function is 

found by tracing a path from the root to a terminal vertex 

following the branches indicated by the values assigned to 

the variables [21]. 

Using reduced order Binary Decision Diagram a set of 
satisfying assignments is created by looking at the 

constraints. 

The process is to continuously add clauses to an empty 

BDD until the perfect pattern is described. By adding all 

the constraint paths to the BDD we get the complete 

representation of the function for which the satisfiability is 

being checked. This method solves the problem by 

building up the solution set in order to verify satisfiability. 

Complexity- ROBDDs perform worse, both in terms of 

space and time complexity in under constrained and 

critically constrained set of problems. It only works best 
in over constrained sets of problems [21]. Figure 4 shows 

the steps involved in Binary Decision Diagram approach. 

5.5. Set Theory 

Set theory based approach decides the un-satisfiability 

of a given formula. It describes the problem in set theory 

and investigates what is needed to decide the un-

satisfiability of a given sat3 formula. 

For a SAT3 function ф of n variables the set Vφ of 

possible valuations (variable assignments) v is determined, 

for which v(ф) evaluates to 1. Here v is a mapping {x0::: 

xn-1} → {0,1} that instantiates every variable to 0 or 1. 

So each function vi can be depicted as a unique number in 

binary representation, which is in the set 2n that denotes 

n-tuples over a binary alphabet {0, 1} n. If any clause that 

is part of ф is unsatisfiable, then ф is also unsatisfiable. 
That is, v(ci) = 0 => v(ф) = 0. Using this information, any 

3-SAT formula can be proven (un) satisfiable using sets 

[21]. 

Complexity-This solution is not computationally 

possible with a high amount of clauses and takes more 

time than applying brute-force approach to all 2n possible 

valuations [21]. 

6. Proposed Solution 

This work proposes Gas based solution to SAT-3 
problem. The algorithm has been presented as follows. 

The algorithm uses the blend of the theory of natural 

selection and conventional optimization. 

ALGORITHM: SAT-3 problem 

1. cell->number of variables 

2. expression->given Boolean formula 

3. chromosome-> representation of values assigned to 

the variables of given Boolean formula 

4. expression_evaluate->truth value of expression 

5. //initial population generation 

6. for each chromosome //no. of iterations/initial 

population ?? 
7. for each cell 

8. If (random () % 100> 50) 

9. cell=1; 

10. else 

11. cell=0; 

12. end if 

13. end for 

14. end for 

15. //count number of true values 

16. for each chromosome 

17. If (expression_evaluate == TRUE) 

18. count++; 

19. end if 
20. end for 

21. //crossover 

22. for each chromosome-> till crossover_rate 

23. chromo some 1=random () % population; 

24. chromo some 2=random () % population; 

25. crossover_point=random () % cell; 

26. for each cell-> beginning to crossover_point 

27. chromo some 3[i] = chromo some 1[i]; 

28. chromo some 4[i] = chromo some 2[i]; 

29. end for 

30. for each cell->crossover_point to end 
31. chromo some 3[i] = chromo some 2[i]; 

32. chromo some 4[i] = chromo some 1[i]; 

33. end for 

34. end for 

35. for each chromosome 

36. If (expression_evaluate==TRUE) 

37. count++; 

38. end if 

39. end for 

40. //mutation 

41. for each chromosome->till mutation_rate 
42. mutation_point=random () % cell; 

43. If (cell[mutation_point]==1) 

44. cell[mutation_point]=0; 

45. else 

46. cell[mutation_point]=1; 

47. end if 

48. end for 

49. for each chromosome 

50. If (expression_evaluate==TRUE) 

51. count++; 

52. End if 

53. End for 

7. Results  

The following tables (Table 2, Table 3, Table 4, Table 5) 

show the obtained results. Due to time constraints we have 

considered the case of 4 variables and 7, 8, 9 and 10 

clauses. Further analysis with more number of variables 

and clauses will be considered for future work.  

In the following tables the first column shows the no. of 

true values generated randomly when initial population is 

formed. 
The second column shows the Cross-over Rate. The 

third column shows the number of true values generated 

w.r.t the mentioned crossover rate. The fourth column 

shows the Mutation Rate. Finally, The last column shows 

the no. of true values generated w.r.t the mentioned 

mutation rate. 

Table 2 shows the results for 4 variables and 7 clauses, 

Table 3 shows the results for 4 variables and 8 clauses, 

Table 3 shows the results for 4 vriables and 9 clauses, 

Table 3 shows the results for 4 variables and 10 clauses. 
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Table 2. 4 Variables, 7 Clauses 

(#{A}||#{B}||#{C})&&(#{D}||!#{A}||#{C})&&(!#{B})&&(!#{C}||!#{A})

&&(#{A}||!#{B})&&(!#{A}||!#{B}||!#{C})&&(!#{D}||#{C}||#{A}) 

True Values 

(Random) 

Crossover 

rate 

True Values 

(crossover) 

Mutation 

rate 

True values 

(mutation) 

0 2 0 0.1 1 

1 2 1 0.3 1 

2 2 2 0.6 0 

1 2 1 0.8 0 

1 3 1 0.1 1 

2 3 2 0.3 2 

1 3 1 0.6 1 

2 3 2 0.8 1 

1 4 1 0.1 0 

1 4 1 0.3 1 

1 4 1 0.6 1 

2 4 2 0.8 2 

Table 2. 4 Variables, 8 Clauses 

(#{A}||#{B}||#{C})&&(#{B}||#{C}||#{D})&&(#{C}||#{D}||#{B})&&(#{

A}||#{B}||#{D})&&(#{B}||#{D}||#{A})&&(#{A}||#{B}||!#{C})&&(!#{A}

||#{C}||#{D})&&(#{C}||!#{D}) 
True values 

(random) 

Crossover 

rate 

True values 

(crossover) 

Mutation 

rate 

True values 

(mutation) 

2 2 2 0.1 2 

2 2 2 0.2 3 

4 2 4 0.3 5 

3 2 2 0.4 4 

2 3 2 0.1 2 

2 3 2 0.2 2 

3 3 3 0.3 3 

1 3 1 0.4 3 

3 4 3 0.1 4 

3 4 3 0.2 3 

2 4 2 0.3 2 

2 4 2 0.4 4 

 

Figure 5. Graph showing variation in no. of solution with different 

Crossover Rates 

Table 3. 4 Variables, 9 Clauses 

(#{A}||#{B}||#{C})&&(#{D}||!#{A}||#{C})&&(!#{B})&&(!#{C}||!#{A})

&&(#{A}||!#{B})&&(!#{A}||!#{B}||!#{C})&&(!#{D}||#{C}||#{A})&&(!

#{A}||#{B}||#{C})&&(!#{A}||#{B}||#{D})&&(!#{A}||!#{B}||!#{D}) 

True values 

(random) 

Crossover 

rate 

True values 

(crossover) 

Mutation 

rate 

True values 

(mutation) 

1 2 1 0.1 2 

2 2 2 0.3 3 

2 2 2 0.6 2 

2 2 2 0.8 0 

1 3 1 0.1 1 

3 3 3 0.3 3 

1 3 1 0.6 1 

2 3 2 0.8 2 

2 4 2 0.1 1 

1 4 1 0.3 1 

0 4 0 0.6 1 

0 4 0 0.8 1 

Table 4. 4 Variables, 10 Clauses 

(#{A}||#{B}||#{C})&&(#{D}||!#{A}||#{C})&&(!#{B})&&(!#{C}||!#{A})

&&(#{A}||!#{B})&&(!#{A}||!#{B}||!#{C})&&(!#{D}||#{C}\||#{A})&&(

!#{A}||#{B}||#{C})&&(!#{A}||#{B}||#{D})&&(!#{A}||!#{B}||!#{D}) 

True Values 

(Random) 

Crossover 

rate 

True Values 

(crossover) 

Mutation 

rate 

True values 

(mutation) 

3 2 3 0.1 3 

1 2 1 0.2 1 

1 2 1 0.3 3 

4 2 3 0.4 4 

3 3 2 0.1 3 

2 3 2 0.2 2 

2 3 2 0.3 3 

2 3 2 0.4 2 

2 4 2 0.1 2 

2 4 2 0.2 4 

3 4 3 0.3 2 

3 4 3 0.4 4 

 

Figure 6. Graph showing variation in no. of solution with different 

Mutation Rates 

Figure 5 depicts the graph showing variation in no. of 

solution with different Crossover Rates. Figure 6 depicts 

the graph showing variation in no. of solution with 

different Mutation Rates. 

8. Conclusion 

The paper successfully implements Gas based 

algorithm for SAT-3 problem. The algorithm has been 

analyzed for various crossover rates and mutation rates as 

explained in the previous section. It can be seen from the 
graph presented in the previous section. It can be seen 

from the graph presented in the previous section that the 

results are optimal for COR=3 and MR=0.3.  

The extension to this work would analyze the algorithm 

for a larger domain to establish the veracity of the 

algorithm. It is also intended to use other artificial 

intelligence based techniques and compare the results with 

the above techniques. 
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