
Journal of Computer Sciences and Applications, 2015, Vol. 3, No. 2, 40-45
Available online at http://pubs.sciepub.com/jcsa/3/2/4
© Science and Education Publishing
DOI:10.12691/jcsa-3-2-4

Genetic Algorithm Based on Sorting Techniques

Parul Aggrawal*, Faisal Naved, Mohd Haider
Department of Computer Science, Jamia Hamdard University, New Delhi-62, India

*Corresponding author: pagarwal@jamiahamdard.ac.in

Received March 18, 2015; Revised April 03, 2015; Accepted April 16, 2015

Abstract Genetic Algorithm, an Artificial Intelligence approach is based on the theory of natural selection and
evolution. Traditional methods of sorting data are too slow in finding an efficient solution when the input data is too
large. In contrast, Genetic Algorithm generates fittest solutions to a problem by exploiting new regions in the search
space. This paper targets the three most commonly used Bubble, Selection and Insertion sorting techniques and
executes memory on an input ranging from 1,000 to 10,000 where the input is entered in increasing, decreasing and
random order. It mainly uses the Genetic Algorithm approach to optimize the effect of the three algorithms by
generating an output which is consistent in terms of time variations which is not otherwise. This has been achieved
by exploiting the property of Genetic Algorithm by choosing best parameter for population size, encoding, selection
criteria, operator choice and optimized fitness function.

Keywords: genetic algorithm, sorting, selection, crossover, mutation

Cite This Article: Parul Aggrawal, Faisal Naved, and Mohd Haider, “Genetic Algorithm Based on Sorting
Techniques.” Journal of Computer Sciences and Applications, vol. 3, no. 2 (2015): 40-45. doi: 10.12691/jcsa-3-2-
4.

1. Introduction
Section 1 of this paper comprises of introduction to the

basic sorting and Genetic Algorithm. Section 2 comprises
of related work in which average elapsed time is
calculated at different inputs for Bubble, Insertion and
Selection Sort. Section 3 contains the Experimental
Results in which Inconsistency in Bubble Sort, Insertion
sort and Selection sort is shown when inputs are entered in
increasing order, decreasing order and randomly. Section
4 is the proposed work containing the Algorithm. Section
5 is the Conclusion and future scope. Section 6 are the
references in support to the research paper

Sorting is considered as the most fundamental problem
while studying Algorithms. The basic principle behind
sorting a sequence of n numbers is that its elements are
placed randomly and needs to be reordered in ascending
order..Search preprocessing is the most important
application of sorting. When the values are in sorted order,
a better approach is to use binary search. O (n2) time
proportion will be taken by an inefficient algorithm where
n is equal to the number of elements in an array, whereas,
an efficient algorithm takes O (n. lgn) time proportion to
sort sequence of numbers where n is the size of the
array.For small inputs, we cannot see a big difference, but
if we have a larger input (say Population of a city) we can
see that an enormous amount of usability played off
between the efficient and inefficient algorithms:

Population of a city: =6 million people
n=6 X 106 steps needed
n2=36 X 1012

=3600 X 1010

=3600 seconds (Assuming that 1010 steps are executed
in 1 sec)

n.lgn =106 X 20 X 36 => 1 sec

So, if we have to sort a population of 6 million people,
only 1 sec is taken by efficient algorithm.

n n2/4 n. logn
10 25 33

100 2,500 664
1,000 25,000 9,954
10,000 250,000 132,877

100,000 2,500,000 1,660,960

O (n log n) time is needed to sort large data because,
sorting by 0 (n2) becomes impossible if we have a large
data. There are lots of applications, besides simply looking
for the maximum or minimum:-- For finding duplicates in
a set: sort first, then duplicates will appear next to each
other, and can be found by scanning through the sorted
array. In finding similar values. In Histograms (counting
frequencies): sort first, then do a single pass: repeated
items will occur in bunches, and can be counted easily.
Note that there are other ways to this. Intersection: given
two arrays, what values do they have in common? Sort
both of them, and march down both lists, advancing down
the list with the smaller value each time. You will find the
common values easily. Setting data up for later fast
searching: if your data is sorted, you can use binary search
to find values in O (log (n)) time.

Sorting is defined as follow:
Input: A sequence of n numbers < A1, A2,

A3……………. An >
Output: A permutation (reordering) < A1’, A2, ’,

A3, ’……………. An’ > of input sequence such that A1’
<= A2’ <=……… <= An’. [4]

There are several sorting algorithms. Some of them are
Bubble sort, Selection Sort, Insertion Sort, Quick sort,

 Journal of Computer Sciences and Applications 41

Merge sort, Heap sort, Counting Sort, Radix sort, Bucket
sort. The Time and Space Complexities of these sorting

techniques are:

SORTING TIME COMPLEXITY SPACE COMPLEXITY
 BEST AVG. WORST

BUBBLE SORT O (n2) O (n2) O (n2) O (1)
SELECTION SORT O (n2) O (n2) O (n2) O (1)
INSERTION SORT O (n) O (n2) O (n2) O (1)

QUICK SORT O (n.lg (n)) O (n2) O (n.lg (n)) O (1)
MERGE SORT O (n.lg (n)) O (n.lg (n)) O (n.lg (n)) O (1)
HEAP SORT O (n.lg (n)) O (n.lg (n)) O (n.lg (n)) O (1)

COUNTING SORT O (n+k) O (n+k) O (n+k) O (n+2k)
RADIX SORT O (n.k/s) O (2s.n.k/s) O (n.k/s) O (n)

BUCKET SORT O (n.k) O (n2. k) O (n.k) O (n.k)

1.1. Genetic Algorithm
Genetic Algorithms [1] are the adaptive heuristic search

algorithms which are based on the process of growth and
development [2]. The basic concept of genetic algorithm
follows the principle of survival of the fittest, which was
given by Charles Darwin. In 1960’s [2], John Holland
discovered the genetic algorithm. This is the process of
moving the chromosome of one population to a new
population with the help of some operators such as
selection, crossover and mutation.

A population is comprised of a finite value of
chromosomes, each chromosome contains a number of
genes [3].

A gene is represented by a binary number or decimal
number according to the problem or just the sake of
simplicity, this gene value is sometimes called as an allele.

1.2. Some Genetic Algorithm Operators
SELECTION: - This operator is used to select

chromosomes for reproduction. Fitter chromosome has a
higher probability of selection.

CROSSOVER: - This operator moves the genes of two
parent chromosomes to create two new child's
chromosomes [6].

No. of crossover = (Crossover rate*number of a
chromosome * number of genes in a chromosome) /100

MUTATION: - Genetic diversity from one population
to another is performed by mutation operator. This alters
the genes or chromosome of the population.

Steps of Genetic Algorithm: Generate an initial
population randomly as you want either in binary or in
decimal format. Then the fitness of each chromosome is
calculated. Selection operator is applied on the population.
Crossover operator is applied on the population. Mutation

operator is applied on whole population. These processes
are repeated until we get the fittest chromosome or until
we get the output.

2. Related Work
In our approach, we have taken the three sorting

algorithms namely bubble sort, insertion sort and selection
sort in increasing order, decreasing order and randomly in
order to check the elapsed time taken by each sorting
technique. In this section we have shown the elapsed time
taken by each sorting technique with the help of tables and
charts. Table 1 and the corresponding chart (Figure 1)
shows the average elapsed time taken by insertion sort
when inputs are entered ranging from 1,000 to 10,000 first
in increasing order then in decreasing order and then the
inputs are taken randomly.
Table 1. Average Elapsed Time of Insertion sort at different inputs

Input INCREASING DECREASING RANDOM
1000 0.238 0.340 0.252
2000 0.598 0.736 0.472
3000 1.263 1.296 0.747
4000 2.263 2.087 1.186
5000 3.166 3.164 1.681
6000 4.656 4.406 2.318
7000 6.065 6.032 3.164
8000 7.683 7.659 4.01
9000 8.331 9.686 5.073

10000 13.084 11.714 6.076

Figure 1. Insertion sort at different inputs

42 Journal of Computer Sciences and Applications

Table 2 and the corresponding chart (Figure 2) shows
the average elapsed time taken by Bubble sort when inputs
are entered ranging from 1,000 to 10,000 first in
increasing order then in decreasing order and then the
inputs are taken randomly.

Table 2. Average Elapsed Time of Bubble sort at different inputs
 INCREASING DECREASING RANDOM

1000 0.219 0.263 0.296
2000 0.373 0.659 0.571
3000 0.626 1.142 0.912
4000 0.89 1.846 1.439
5000 1.252 2.274 2.076
6000 1.681 3.824 2.933
7000 2.241 S.214 3.960
8000 2.813 6.604 5.054
9000 3.51 8.406 6.359

10000 4.230 10.208 7.659

Figure 2. Bubble sort at different inputs

Similarly, Table 3 and the corresponding chart (Figure
3) shows the average elapsed time taken by selection sort
when inputs are entered ranging from 1,000 to 10,000 first
in increasing order then in decreasing order and then the
inputs are taken randomly.

Table 3. Average Elapsed Time of Selection sort at different inputs
SELSORT INCREASING DECREASING RANDOM

1000 0.03 0.197 0.131
2000 0.351 0.395 0.362
3000 0.532 0.67 0.56
4000 0.363 1.109 0.368
5000 1.313 1.604 1.307
6000 1.335 2.23 1.39
7000 2.461 3.054 2.351
8000 3.131 3.9008 3.15
9000 3.901 4.857 3.911

10000 4.379 5.834 4.736

Figure 3. Selection sort at different inputs

3. Experimental Results
Each input is entered (ranging from 1,000 to 10,000)

five times in order to check the consistency of the
following sorting techniques. Table 4, Table 5, Table 6,
Table 7, Table 8, Table 9, Table 10, Table 11, Table 12,
Table 13 and the corresponding charts (Figure 4, Figure 5,
Figure 6, Figure 7, Figure 8, Figure 9, Figure 10, Figure
11, Figure 12, Figure 13) shows the inconsistency in
elapsed time for different sorting techniques and each
input entered five times consecutively on Windows 7
operating system, 2GB RAM, Pentium® Dual-Core @ 2.2
GHz CPU.

3.1. Bubble Sort Inc
Table 4. Inconsistency in Bubble Sort when inputs are entered in
increasing order
no. of input 1 2 3 4 5 average

1000 0.219 0.219 0.219 0.274 0.164 0.219

2000 0.329 0.439 0.384 0.329 0.384 0.373

3000 0.604 0.659 0.659 0.604 0.604 0.626

4000 0.934 0.879 0.934 0.879 0.824 0.89

5000 1.263 1.318 1.208 1.208 1.263 1.252

6000 1.703 1.648 1.648 1.703 1.703 1.681

7000 2.208 2.176 2.354 2.208 2.354 2.26

8000 2.857 2.747 2.802 2.802 2.857 2.813

9000 3.545 3.545 3.478 3.545 3.545 3.518

10000 4.285 4.23 4.175 4.175 4.285 4.23

Figure 4. Inconsistency in Bubble Sort when inputs are entered in
increasing order

Table 5. Inconsistency in Bubble Sort when inputs are entered in
decreasing order

no. of
input 1 2 3 4 5 average

1000 0.164 0.274 0.219 0.384 0.274 0.263
2000 0.659 0.659 0.714 0.604 0.659 0.659
3000 1.153 1.153 1.208 1.098 1.098 1.142
4000 1.868 1.813 1.868 1.813 1.868 1.846
5000 2.637 2.692 2.747 2.692 2.802 2.714
6000 3.846 3.846 3.791 3.791 3.846 3.824
7000 5.103 5.103 5.208 5.164 5.208 5.157
8000 6.538 6.648 6.593 6.593 6.648 6.604
9000 8.383 8.329 8.329 3.306 8.384 8.346

10000 10.164 10.219 10.274 10.164 10.219 10.208

 Journal of Computer Sciences and Applications 43

Figure 5. Inconsistency in Bubble Sort when inputs are entered in
decreasing order

Table 6. Inconsistency in Bubble Sort when inputs are entered
randomly
no. of input 1 2 3 4 5 average

1000 0.329 0.274 0.274 0.329 0.274 0.296

2000 0.549 0.549 0.604 0.604 0.549 0.571

3000 0.934 0.879 0.879 0.934 0.934 0.912

4000 1.483 1.373 1.373 1.483 1.483 1.439

5000 2.087 2.032 2.087 2.142 2.032 2.076

6000 2.912 2.857 3.021 2.912 2.967 2.9338

7000 4.064 4.008 4.946 4.946 4.064 4.005

8000 5.109 5.054 5.054 4.945 5.109 5.0542

9000 6.364 6.364 6.478 6.346 6.215 6.357

10000 7.692 7.747 7.692 7.637 7.527 7.659

Figure 6. Inconsistency in Bubble Sort when inputs are entered
randomly

Table 7. Inconsistency in Insertion Sort when inputs are entered in
increasing order

no. of
inputs 1 2 3 4 5 Average

1000 0.274 0.219 0.274 0.164 0.274 0.241

2000 0.1 0.659 0.659 0.549 0.659 0.5252

3000 1.208 1.318 1.153 1.318 1.318 1.263

4000 2.252 2.252 2.307 2.197 2.307 2.263

5000 3.186 3.131 3.131 3.241 3.131 3.164

6000 4.835 4.835 4.89 4.186 4.835 4.7162

7000 6.098 6.098 5.989 6.043 6.153 6.0762

8000 7.637 7.582 7.747 7.692 7.637 7.659

9000 8.241 8.357 8.461 8.186 8.357 8.3204

10000 13.131 12.857 13.296 13.076 12.912 13.0544

Figure 7. Inconsistency in Insertion Sort when inputs are entered in
increasing order

Table 8. Inconsistency in Insertion Sort when inputs are entered in
decreasing order

no. of
inputs 1 2 3 4 5 Average

1000 0.274 0.384 0.384 0.384 0.274 0.34

2000 0.769 0.769 0.714 0.769 0.659 0.736

3000 1.318 1.318 1.263 1.263 1.318 1.296

4000 2.032 2.142 2.032 2.142 2.087 2.087

5000 3.186 3.131 3.131 3.241 3.131 3.164

6000 4.395 4.45 4.45 4.395 4.34 4.406

7000 5.806 6.086 5.945 6.086 5.945 5.936

8000 7.637 7.582 7.747 7.692 7.637 7.659

9000 9.506 9.386 9.453 9.506 9.506 9.471

10000 11.813 11.758 11.813 11.373 11.813 11.714

Figure 8. Inconsistency in Insertion Sort when inputs are entered in
decreasing order
Table 9. Inconsistency in Insertion Sort when inputs are entered
randomly
no. of inputs 1 2 3 4 5 Average

1000 0.274 0.274 0.274 0.219 0.219 0.252

2000 0.494 0.494 0.439 0.494 0.439 0.472

3000 0.769 0.769 0.769 0.714 0.714 0.747

4000 1.153 1.153 1.208 1.208 1.208 1.186

5000 1.648 1.703 1.703 1.593 1.758 1.681

6000 2.307 2.307 2.307 2.362 2.307 2.318

7000 3.106 2.806 3.045 3.045 3.106 3.021

8000 3.956 4.01 4.065 3.956 4.065 4.0104

9000 5.093 5.25 5.157 5.25 5.093 5.168

10000 6.098 6.098 5.989 6.043 6.153 6.0762

44 Journal of Computer Sciences and Applications

Figure 9. Inconsistency in Insertion Sort when inputs are entered
randomly

Table 10. Inconsistency in Selection Sort when inputs are entered in
increasing order
no. of inputs 1 2 3 4 5 average

1000 0.1 0.1 0.1 0.1 0 0.08

2000 0.329 0.329 0.329 0.384 0.384 0.351

3000 0.605 0.659 0.494 0.604 0.549 0.5822

4000 0.879 0.769 0.879 0.934 0.879 0.8638

5000 1.373 1.318 1.208 1.318 1.373 1.318

6000 1.758 1.868 1.813 1.923 1.813 1.835

7000 2.472 2.472 2.417 2.527 2.417 2.461

8000 3.076 3.131 3.241 3.076 3.131 3.131

9000 3.846 3.846 3.956 3.956 3.901 3.901

10000 4.89 4.835 4.945 4.835 4.89 4.879

Figure 10. Inconsistency in Selection Sort when inputs are entered in
increasing order
Table 11. Inconsistency in Selection Sort when inputs are entered in
decreasing order
no. of inputs 1 2 3 4 5 average

1000 0.219 0.219 0.164 0.219 0.164 0.197

2000 0.439 0.329 0.384 0.384 0.439 0.395

3000 0.659 0.714 0.607 0.714 0.659 0.6706

4000 1.098 1.098 1.153 1.098 1.098 1.109

5000 1.538 1.648 1.538 1.648 1.648 1.604

6000 2.307 2.307 2.197 2.032 2.307 2.23

7000 3.076 3.021 2.967 3.131 3.076 3.0542

8000 4.01 3.901 3.846 3.846 3.901 3.9008

9000 4.945 4.835 4.835 4.78 4.89 4.857

10000 6.098 6.043 5.934 5.604 5.494 5.8346

Figure 11. Inconsistency in Selection Sort when inputs are entered in
decreasing order

Table 12. Inconsistency in Selection Sort when inputs are entered
randomly

no. of inputs 1 2 3 4 5
1000 0.164 0.109 0.164 0.109 0.109
2000 0.329 0.384 0.384 0.329 0.384
3000 0.549 0.549 0.604 0.494 0.604
4000 0.824 0.879 0.934 0.879 0.824
5000 1.263 1.373 1.373 1.263 1.263
6000 1.868 1.923 1.868 1.868 1.923
7000 2.472 2.417 1.978 2.527 2.362
8000 3.168 3.021 3.241 3.186 3.137
9000 3.846 4.01 3.956 3.846 3.901

10000 4.89 4.945 4.285 4.835 4.725

Figure 12. Inconsistency in Selection Sort when inputs are entered
randomly

4. Proposed Work
The above sections shown the inconsistency of the

sorting techniques for large amount of data but, in order to
get consistent results we have to follow the GA approach.
How we mapped the data into GA approach? Firstly, we
have made a population containing ‘m’ number of
chromosomes and ‘n’ number of cells (where m and n are
integers). And we have taken number of cells equal to the
number of elements which we want to sort. How we get
the sorted array? We will be searching for the fittest
chromosome using interpretation. Interpretation is done by
reading those elements of the array which are at the
position containing 1 in the chromosome and then the
elements at position containing 0 in the chromosome. And
then we check whether the array is sorted or not. Secondly,
If we do not get the sorted array then crossover is done on
the population as discussed in section-1. Then again, we
do the interpretation and if the array is still not sorted then

 Journal of Computer Sciences and Applications 45

we perform the mutation on the whole population as
discussed in section-1. The process of interpretation is
repeated to check for the sorted array.

5. Algorithm
1. gensort(A,n)
2. generate population(pop,m,n)
3. interpretation(pop,A,m,n)
4. noc=(crossover rate*m*n)/100
5. for each i € noc
6. n1=rand()%m
7. n2=rand()%m
8. cp=rand()%n
9. for each j € n
10. c1=merge the data before cp of n1 with data after cp

of n2
11. c2=merge the data after cp of n1 with data before cp

of n2
12. add c1 & c2 to the population
13. interpretation(pop,A,m,n)
14. for each i € m
15. mp=rand()%m
16. for each j € n
17. if j=mp
18. pop(i,j)=!pop(i,j)
19. interpretation(pop,A,m,n)
where,
noc=number of crossovers
cp= crossover point
mp=mutation point
n1, n2=randomly selected chromosome
c1, c2=chromosomes after performing crossover
1. interpretation(pop,A,m,n)
2. for each i
3. for each j € n
4. if pop(i,j)=1
5. na[k++]=A[j]
6. for each j € n
7. if pop(i,j)=0
8. na[k++]=A[j]
9. check the na[] array is sorted
where,
na=new array

6. Conclusion
This paper proposed that, for large amount of data the

basic sorting techniques become inconsistent and to
overcome this problem we have used the GA technique
we want to sort. And GA approach have the time
complexity of O(mn) where ‘m’ is the number of
Chromosomes in a population and ‘n’ is the number of
cells in a chromosome which is equal to the number of
elements in the array. ‘m’ is very less as compared to ‘n’,
if you have a large amount of data. Hence, GA approach is
more efficient than the basic sorting techniques. to sort a
large amount of data. Theoretically, these basic sorting
techniques (i.e. Insertion sort, Bubble sort and selection
sort) have the time complexity of O(n2) where ‘n’ is equal
to the number of elements of the array. The GA approach,
due to its underlying property of selecting the best
parameter of chromosomes, population, encoding etc is
bound to produce better results. Theoretically, this has
been analysed and presented in this paper. This could not
be supported currently due to hardware constraints.

In future, we shall explore and support it with
experimental results on data which could not only be
numeric but also text, audio, video, etc.

References

[1] D. Goldberg. Genetic Algorithms in Search, Optimization, and
Machine

[2] Learning. Addison-Wesley, Reading, MA, 1989. [2] David
E.Goldberg,” Genetic Algorithms in search, optimization and
machine learning 1st, Addison-Wesley Longman Publishing Co.,
Inc. Boston ©1989

[3] H. Bhasin and Neha Singla, “Cellular Genetic Test Data
Generation”, ACM SIGSOFT Software Enginnering Notes, Vol.
38 (5), September 2013, Pages 1-9.

[4] Introduction to Algorithm, Second Edition Thomas H.Cormen,
Charles E.Leiserson, Ronald L.Rivest, Clifford Stein, Mc-Graw
Hill Publications

[5] H. Bhasin, “Cost Priority Cognizant Regression Testing”, ACM
SIGSOFT Software Enginnering Notes, Vol. 39 (3), May 2014,
Pages 1-7.

[6] T. Back, D. B. Fogel, and Z. Michalewicz. Evolutionary
Computation Vol. I & II. Institute of Physics Publishing, 2000.

