
Journal of Computer Sciences and Applications, 2015, Vol. 3, No. 2, 56-60
Available online at http://pubs.sciepub.com/jcsa/3/2/7
© Science and Education Publishing
DOI:10.12691/jcsa-3-2-7

Test Data Generation Using Computational Intelligence
Technique

Harsh Bhasin1,*, Naresh Chauhan2, Sandhya Pathak3

1Department of Computer Science, Jamia Hamdard, Delhi, India
2Department of Computer Science, YMCAUST, Faridabad, India

3M.Tech Scholar, CSE Department, DITMR, Faridabad, India
*Corresponding author: i_harsh_bhasin@yahoo.com

Received March 18, 2015; Revised April 03, 2015; Accepted April 24, 2015

Abstract Testing is one of the most important parts of Software Development Life Cycle. It requires the crafting
of a good test. This crafting can be done only after deep analysis and knowhow of the working of the software. This
work presents the Genetic Algorithm based approach for the generation of test data. The approach would automate
the test data generation process and hence facilitates the process of testing. The work would also help in the
elimination of human biases. The work has been implemented in C#, verified with a set of 10 moderate size software.
The results are encouraging. The work is part of a larger endeavor to develop a comprehensive testing system for C
#software. This work is based on a comprehensive literature review which has helped develop a sound theoretical
base.

Keywords: genetic algorithms, software testing, test data generation, branch coverage

Cite This Article: Harsh Bhasin, Naresh Chauhan, and Sandhya Pathak, “Test Data Generation Using
Computational Intelligence Technique.” Journal of Computer Sciences and Applications, vol. 3, no. 2 (2015): 56-
60. doi: 10.12691/jcsa-3-2-7.

1. Introduction
Software testing is a complex task which takes a

considerable amount of time [1]. Testing can be done by
seeing the input and the output or by intricate inspection
of a given code. The former is called black box testing
whereas later is refer to as white box testing. The quality
of test cases determines the quality of software. The test
cases, therefore, become important in order to a certain the
quality of given Program Under Test (PUT). The crafting
of test cases is generally done manually however this
process consumes a large amount of time. Therefore there
is a need of an automated test data generator. The present
work proposes an algorithm for the same. It is an
extension of our earlier attempt for developing an
automated test data generator [2,3,4]. This work uses
Genetic Algorithms.

GAs are heuristic search processes based on survival of
fittest [5]. These algorithms are generally used for
optimization problems. These algorithms involve the
application of operators like Crossover and Mutation
describe later in the paper. These are known for generating
a good result for many NP Complete problems [6,7]. The
present work uses GA’s for generating test cases. A test
case consists of values of the input, expected output and
the output obtained. The test cases in this work use an
involved analysis of the program and consider the criteria
of branch coverage [8]. The problem has been mapped
with GA’s to accomplish the task.

This paper has been organized as follows. Section 2 of
the paper presents literature review. Section 3 briefly
describes the concept of GA. Section 4 presents the
Proposed Work which has been exemplified in section 5.

Section 6 presents the results and conclusions. The
work paves way for the application of GA in Test Data
Generation.

2. Literature Review
Literature review is one of the most important steps in a

research. A good review not just finds gaps in the existing
works but also points towards the solutions of the
problems in the existing works. This section presents a
brief review of the techniques in Test data Generation.
The review has been largely carried out from the
following databases.

1. IEEE
2. ACM
3. Springer
4. Science Direct
5. Wiley
Except for the above, some other important papers have

also been included owing to their contribution in the field.
Table 1 presents the author’s name, technique used and
the verification methods used.

The Literature Review bought forth the point that
although Test Data Generation is an extensively
researched topic, its automation is still in the naïve stage.
There is an immediate need to develop methodologies and

 Journal of Computer Sciences and Applications 57

software for the automation of the process. This would
help not only in the reduction in the development time and
also produce only few important works, the actual review

was done by taking around 69 papers. The comprehensive
analysis of those papers has already been submitted for
consideration in one of the journals.

Table 1. The Literature Review
Ref.
No. Authors name Technique used Verification method used

9 Praveen Ranjan Shrivastava
and Tai- hoon Kim Variable length Genetic Algorithm In this paper comparison was done with random test data generation

technique.

10 Harmen Hinrich Sthamer Genetic Algorithm In this paper comparison was done with pure random testing for
software developed in ADA.

11 Jin-Cherng Lin and Pu-Lin
Yeh

Normalized extended hamming
distance and Genetic Algorithm

In this paper best results were obtained when 1000 test cases were
applied in one generation.

12 Christoph C micheal, Mc
Graw G and Scatz M A Genetic Algorithm In this paper function is minimized by using GA and effectiveness of

the test cases are tested.
13 Joachim Wegener et. al. Evolutionary testing In this paper the verification is done with 6 test objescts in C language.

14 Dunwei Gong et. al. Multi population parallel Genetic
Algorithm

The verification was done by using 7 benchmark programs and
compared with the method proposed in this paper.

15 Raquel Blanco et al. Scatter search Metaheuristic
technique

The verification was done by using 13 benchmark programs and
compared with different test case generators.

16 Moheb R Girgis Genetic Algorithm
The discovered criteria was compared with 3 previous evolutionary

multiple path generators. Comparison was done with two versions of
bubble sort.

17 Eugania diaz et. al Tabu search metaheuristic search The technique was compared with random approach.

18 R landa Baccerra et al. Differential Evolution Verification is done with 5 programs and comparison is done with BGA
technique.

3. Proposed Work
The proposed algorithm for Test Data Generation is a

continuation of one of our previous work. The work crafts
the test cases as follows. The possible paths are crafted.
This is followed by identification of variables that are
defined variables. The values of those variables are then
extracted from the specification and with the help of
Genetic Algorithm the most suitable value substituted in
order to craft a Test Case.

3.1. Algorithm
ALGORITHM (TEST CASE GENERATION)
INPUT - Program Under Test (PUT)
OUTPUT - SET OF TEST CASES
Where each test case has:
• Value of requisite variables
• Expected output
• Actual output
|| the test Colum can be empty and may be fitted when

the requisite test case executed ||
{Generate Paths
∀Paths in paths
{∀ Variable xi in path
{Extract domain of xi
Test value: xi= random (from domain)
}
∀ xi in path
Trace path by putting the values of xi in the above path
Generate result
Expected output= result
}
Return paths
}

4. Illustration

The procedure has been explained using Merge Sort.
The Program Under Test (PUT) (in this case Merge Sort)
is given as follows. This is followed by the generation of
the Control Flow Graph (CFG). This is followed by the
creation of a minimized CFG. The accomplishment of the
above task would be followed by finding of all the
possible paths from the starting node to the end node. The
variables used and those whose values are changed are
found and segregated. Table 2 shows the list of original
nodes of CFG which are replaced by the minimized nodes.

4.1. PUT: Merge Sort
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MergeSort
{
class MergeSortArray
{
void mergeArray(int[] arr, int start, int mid, int end)
{
1 int[] temp = new int[end - start + 1];
2 int i = start, j = mid+1, k=0;
3 while (i <= mid && j <= end)
4 {
5 if (arr[i] < arr[j])
6 {
7 temp[k] = arr[i];
8 k++;
9 i++;
10 }
11 else
12 {
13 temp[k] = arr[j];
14 k++;
15 j++;
16’ }
16 }

58 Journal of Computer Sciences and Applications

17 while(i<=mid)
18 {
19 temp[k] = arr[i];
20 k++;
21 i++;
22 }
23 while (j <= end)
24 {
25 temp[k] = arr[j];
26 k++;
27 j++;
28 }
29 k=0;
30 i=start;
31 while (k < temp.Length && i <= end)
32 {
33 arr[i] = temp[k];
34 i++;
35 k++;
36 }
37 }
38 void Mergesort (int[] arr, int start, int end)
39 {

40 if (start < end)
41 {
42 int mid = (end + start) / 2;
43 mergesort(arr, start, mid);
44 mergesort(arr, mid + 1, end);
45 mergeArray(arr, start, mid, end);
46 }
47 }
48 static void Main(string[] args)
49 {
50 int[] arr = {5,9,2,3,6,4,11,10,8,14 };
51 MergeSortArray merge = new MergeSortArray();
51’ merge.mergesort(arr, 0, arr.Length-1);
52 foreach (int a in arr)
53 {
54 Console.Write(a + " ");
55 }
56 }
57 }

4.2. Control Flow Graph of the above PUT is
given in the Appendix 1

Figure 4. Minimized CFG

 Journal of Computer Sciences and Applications 59

Table 2. Nodes Replaced
Previous node Minimized node Previous node Minimized node

1, 2 1 36 18
3 2 37 19
4 3 38 20
5 4 39, 40 21

6, 7, 8, 9, 10 5 41, 42 22
11, 12, 13, 14, 15 6 43 23

16 7 44 24
17 8 45 25

18, 19, 20, 21 9 46 26
22 10 47 27
23 11 48, 49, 50 28

24, 25, 26, 27 12 51, 51’ 29
28 13 52 30
29 14 53, 54, 55 31
30 15 56 32
31 16 57 33

32,33,34,35 17

4.3. Example Paths
1. 28-29-20-21-27-30-31-32-33
2. 28-29-20-21-22-23-24-25-1-2-3-4-5-7-11-12-13-14-

15-16-17-18-19-26-27-30-31-32-33
3. 28-29-20-21-22-23-24-25-1-2-3-4-6-7-8-11-12-13-

14-15-16-19-26-27-30-31-32-33
4. 28-29-20-21-22-23-24-25-1-2-3-4-6-7-2-8-9-10-8-

11-12-13-11-14-15-16-17-18-16-19-26-27-30-31-32-
33

4.4. Crafting of Test Cases
In order to find random values from domain, Gas have

been used in which a population is generated. It is mapped
with the domain. This is followed by crossover to generate
new Chromosomes & mutation to break the local
maximum. Finally process stops when the value of the
fitness function becomes constants

Table 3. Test Data Generated

PATH INPUT OUTPUT (SORTED ARRAY) N UNSORTED ARRAY
1 1 4 4
2 2 2, 4 2, 4
3 2 4, 2 2, 4
4 2 2, 4, 3 2, 3, 4

5. Results and Conclusion
The work presents a novel method of generating test

cases using Gas, considering the branch coverage criteria.
The method has been explained and exemplified in the
above work. The work successfully extends our previous
work. It may also be stated here that the technique is
applicable for conditional constructs, loops and nested
controls. The above technique will now be implemented to
medium software of around 4K lines of code and the test
cases would be compared to those generated in the testing
phase. These cases will also be judged on the basis of their
ability to find bugs. The extension of this work would also
include the concept of procedure calling.

References
[1] Strigini. L, Bertolino A, “Use of testability measures for

depenmdability assessment,” IEEE Transaction Software
Enginnering, 1996.

[2] Singla N, Bhasin H, “Cellular Genetic Test Data Generation,”
ACMSIGSIOFT Software Engineering Notes, 2013.

[3] Harman. M, Binkley D, Tonella. P, McMinn Phill, “Species for
path approach search based test data generation,” ACM.

[4] Bhasin. H, “Artificial life and cellular automata based automata
test case generator,” ACM SIGSOFT Software Engineering Notes,
vol. 39, 2014

[5] Goldberg. D. E, “Simple Genetic Algorithm and minimal
deceptive problem,” University of Albana, 1986.

[6] Singla. N. Bhasin H, “Genetic based algorithm for N-Puzzle
problem,” International Journal of Computer Application, pp. 44-
50.

[7] Mahajan. R. Bhasin H, “Genetic algorithm based solution to
maximum clique problem,” International Journal of Computer
Science and Engineering, pp. 443-1448.

[8] S. Mehmood, “Systematic Review of Automatic Test Data
Generation TEchnique,” 2007.

[9] Shrivastava P. R, Kim. T, H, “Application of GA in Software
Testing,” International Journal of Software Engineering and its
Application, 2009.

[10] Sthamer. H, “automatic generation of software test data usoing
GA,” PhD Thesis university of Glamorgan Pontypridd Wales,
1996.

[11] Yeh P. L. Lin J C, “ATDG for path testing using GA,”
Information Science, 2001.

[12] Micheal, McGraw G E, Schatz M A, Walton C C. Christoph C,
“GA for Dynamic TDG,” In Proceedings of 12th international
Conference ON Automated Software Engineering, 1997.

[13] Beresel A, Sthamer H, Wegener J, “Evolutionary test enviorment
for automatic structural testing,” Journal of Information and
Software Technology, 2001.

[14] Zhang W, Yao X. Gong D, “Evolutionary generation of test data
for many paths coverage based on groupings,” Journal of System
and Software, 2011.

[15] Tuya J, Adenso D. B, Blanco R, “ATDG using a scatter search
approach,” Information and Software Technology, 2009.

[16] Girgis M, “ATDG for Data Flow Testing using genetic
algorithm,” Journal of Universal Computer Sciences, 2005.

[17] Tuya J, Blanco R, Dolado J. J, Diaz E, “A tabu search algo for
structural software testing,” Computers and Operations Research,
2008.

[18] Sagama. R, Yao. X, Becerra R.L, “evaluation of differential
evolution in software TDG,” IEEE Conference on Evolutionary
Computation, 2009.

60 Journal of Computer Sciences and Applications

Appendix 1: Control Flow Graph of PUT

Figure 1. Merge Array

Figure 2. Merge Sort ()

Figure 3. Main ()

