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Abstract  In this paper, we describe a means of compiling binary decision trees as generated by the C4.5 binary 
decision tree classifier into high-performance, reusable, stand-alone, run-time classifiers. We demonstrate the 
memory savings and run time characteristics of a compiled tree as compared to the traditional use of a C4.5 runtime. 
We demonstrate 100% correctness over every input we have available for testing as compared to our own enhanced 
version of the classic C4.5 run-time classification routine, consultr. In addition, this work provides a framework for 
comparing decision tree classifiers to more in vogue classifiers such as support vector machines as demonstrated 
within.  
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1. Introduction 
Decision Tree Classifiers (DTC's) are a commonly used 

approach for machine learning with application in many 
diverse areas such as signal classification, remote sensing, 
medical diagnosis, character recognition, expert systems, 
and speech recognition. One of the most compelling 
features of decision tree classifiers is their capability to 
break down a complex decision-making process into a 
collection of simpler decisions, thus providing solutions 
that are easier for human observers to interpret than those 
solutions derived by support vector machines.  

This work presents a novel technique that considers the 
perspective of application developers who wish to embed 
decision tree classifier logic in their own programs 
without having a runtime dependency on the classifier 
itself. Our main contribution to the art is the presentation 
and evaluation of a novel system for embedding the 
decision trees generated by one of the most popular 
decision tree classifiers, C4.5, into other high-performance 
applications, thereby increasing the maximum frequency 
of run-time classifications in a fixed duration.  

2. Background 
The imitable Ross Quinlan, the author of C4.5, has 

stated in his own writing, that Carbonell, Michalski and 
Mitchell [ML] identify three principal dimensions to 
consider when discussing which machine learning systems: 

• learning strategies used by the classification algorithm; 
• application domain of the system 
• representation of knowledge acquired by the system 
This paper addresses the latter consideration in a new 

way by condensing knowledge representation into its 
purest and most succinct form.  

While decision tree classifiers are not as in vogue as 
more modern classification approaches such as support 
vector machines [VAPNIK1][VAPNIK2][LIBSVM], they 
are still regarded highly for their effectiveness 
[EFFECTIVENESS] and adaptability to various problem 
domains. 

The C4.5 Binary decision tree classifier is one of the 
most commonly known binary decision tree classifiers 
among practitioners and researchers of supervised learning 
[QUINLAN][IODT]. One strong advantage decision tree 
classifiers have over support vector machines is that they 
output plain-text decision trees that can be followed fairly 
easily even by novices. There is some satisfaction that 
comes from understanding the decision algorithm by 
following the decision tree manually, through visual 
inspection. This is something that is lost when using SVM, 
which is a powerful tool but encapsulates decision logic in 
ways that are difficult for many to intuit.  

Yet one shortcoming of the C4.5 system goes 
unaddressed in the literature. While the C4.5 system 
performs well when the data being classified is static, and 
during situations where classification times are not 
incredibly performance sensitive (classifications may take 
a few seconds or minutes), it is not suitable for use in high 
frequency or high-volume classification systems. In 
addition the tool used to make use of the decision tree 
logic is interactive and operates in human interaction time. 

For high performance classifications system that may 
make hundreds of classifications a second, the status quo 
is suboptimal. Consider as an example, systems which 
classify network traffic behaviors for intrusion detection, 
or other mission critical datacenter tasks. At the extreme, 
one can envision safety or control systems which need 
high performance classifiers to make safety decisions 
involving human beings. These systems may be running 
on large servers, or on embedded devices.  
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In light of those considerations, the authors of this 
paper believe that research into low-overhead, high-
performance, runtime classification methods is warranted. 
Having said that, it makes little sense to attempt to build a 
completely new classifier when the actual classification 
algorithms in C4.5 are perfectly suitable. In this work, we 
present our efforts at encapsulating decision trees, as 
generated by an unmodified C4.5 instance, into 
embeddable, high-performance classifiers.  

3. The C4.5 Code Generator 
In computer science, code generation is the process by 

which a compiler's code generator converts some 
intermediate representation of source code into a machine 
executable format. 

Sophisticated compilers typically perform multiple 
passes over various intermediate forms. This multi-stage 
process is used because many algorithms for code 
optimization are easier to apply one at a time, or because 
the input to one optimization relies on the processing 
performed by another optimization. This organization also 
facilitates the creation of a single compiler that can target 
multiple architectures, as only the last of the code 
generation stages (the backend) needs to change from 
target to target.  

The input to a code generator typically consists of a 
parse tree or an abstract syntax tree. A parse tree (also 
called a concrete syntax tree)is an ordered and rooted tree 
that represents the syntactic structure of a string instance 
that belongs to some formal grammar, G of a language L. 

The tree represents the syntax of the grammar by treating 
all non-terminals of the grammar as interior nodes, while 
the terminals of the grammar are treated as leaf nodes. 
Parse trees are distinct from abstract syntax trees, which 
are colloquially known as just “syntax trees”, in that the 
structure and elements that comprise a parse tree more 
concretely resemble the syntax of the input language L. 

The input language of the system described here is the 
output of the C4.5 binary decision tree classifier, which, 
after some preprocessing consists solely of a decision tree. 
The terminals of the grammar consist of strings 
conforming to the regular expression of the form “(N) | 
(N/E)” where N and E are both represented by the regular 
expression “([0-9]+).[0-9])”. The N is the sum of training 
data values, used to train the classifier, which resulted in 
that leaf state. While E represents the number of training 
data values used to train the classifier which, when input 
into the generated rule represented by the ancestor path 
through the decision tree, would result in classifications 
other than the nominated class. 

Rather than implementing a machine specific 
instruction emitter ourselves, we opt instead to generate 
source code emitter that generate language specific 
embodiments of the decision tree that can then be 
compiled into machine instructions. We have 
implemented emitters for C, C++, and Go programming 
languages[C][C++][GO]. The C and C++ embodiments 
compile with the venerable open source c compiler GCC 
[GCC] while the code emitter by the Go emitter can be 
compiled with the 6g compiler created by Google. 

Table 1. Comparing an unmodified C4.5 rule set to the C source code embodiment of the same logic 
Pruned Rule Set As Generated by C4.5 Generated  C Language Classification Logic Embodiment 

Final rules from tree 0: 
Rule 9: 
 synfuels corporation cutback = y 
 duty free exports = y 
 -> class democrat [97.5%] 
Rule 11: 
 water project cost sharing = y 
 physician fee freeze = u 
 -> class democrat [70.7%] 
Rule 5: 
 physician fee freeze = y 
 synfuels corporation cutback = n 
 -> class republican [94.8%] 
Rule 7: 
 physician fee freeze = y 
 education spending = y 
 duty free exports = n 
 -> class republican [94.0%] 
Rule 3: 
 adoption of the budget resolution = n 
 education spending = u 
 -> class republican [82.0%] 
 
Rule 13: 
 physician fee freeze = u 
 mx missile = u 
 -> class republican [50.0%] 
 
Default class: democrat 

char* binary_decision_tree_classifier(char* handicapped_infants,  
                                      char* water_project_cost_sharing,  
                                      char* adoption_of_the_budget_resolution,  
                                      char* physician_fee_freeze,  
                                      char* el_salvador_aid,  
                                      char* religious_groups_in_schools,  
                                      char* anti_satellite_test_ban,  
                                      char* aid_to_nicaraguan_contras,  
                                      char* mx_missile, char* immigration,  
                                      char* synfuels_corporation_cutback,  
                                      char* education_spending,  
                                      char* superfund_right_to_sue,  
                                      char* crime,  
                                      char* duty_free_exports,  
                                      char* export_administration_act_south_africa) 
{ 
 if ( (strncmp(synfuels_corporation_cutback, "y", strlen("y")) == 0)  && 
               (strncmp(duty_free_exports, "y", strlen("y")) == 0) ) 
 { 
  return "democrat  [97.5%]"; 
 } 
 else if ( (strncmp(water_project_cost_sharing, "y", strlen("y")) == 0)  && 
  (strncmp(physician_fee_freeze, "u", strlen("u")) == 0) ) 
 { 
  return "democrat  [70.7%]"; 
 } 
 else if ( (strncmp(physician_fee_freeze, "y", strlen("y")) == 0)  && 
  (strncmp(synfuels_corporation_cutback, "n", strlen("n")) == 0) ) 
 { 
  return "republican  [94.8%]"; 
 } 
 else if ( (strncmp(physician_fee_freeze, "y", strlen("y")) == 0)  && 
  (strncmp(education_spending, "y", strlen("y")) == 0)  && 
  (strncmp(duty_free_exports, "n", strlen("n")) == 0) ) 
 { 
  return "republican  [94.0%]"; 
 } 
 else if ( (strncmp(adoption_of_the_budget_resolution, "n", strlen("n")) == 0)  && 
  (strncmp(education_spending, "u", strlen("u")) == 0) ) 
 { 
  return "republican  [82.0%]"; 
 } 
 else if ( (strncmp(physician_fee_freeze, "u", strlen("u")) == 0)  && 
  (strncmp(mx_missile, "u", strlen("u")) == 0) ) 
 { 
  return "republican  [50.0%]"; 
 } 
 
 // We did not hit a C4.5 specified base case, so return the default value… 
 return (DEFAULT_CLASSIFICATION); 
} 
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An example of a relevant portion of the source code 
emitted can be seen in Table 1, which compares the 
decision tree logic from one test case, to the emitted 
source code (which compiles with strict warnings and 
errors and should therefore be suitable for incorporation 
into larger bodies of source code, or used as a stand alone 
run time classifier). This core logic is encapsulated within 
a single function whose signature is always of the form 
binary_decision_tree_classifier() with arguments of type 
char* corresponding to each of the measured values from 
a C4.5 data file that are in turn named from the values in 
the C4.5 names file. The emitted sources also contain code 
suitable for loading a correspondingly named data file for 
evaluation as a complete stand-alone program. 

The design approach to generate well-formed, high-
level language embodiments of the binary decision tree 
classification function is beneficial in two ways. The first 
is that this approach allows savvy users, such as the type 
who are likely to be using C4.5 in the first place, to embed 
the classification function directly into their own software. 
The second benefit is that the user may opt to continue 
processing the generated c-source-code embodiment into a 
stand-alone high-performance, re-usable, binary 
classification executable. Both the stand-alone executable 
and source code are beneficial as they can be distributed to 
systems that have no instance of C4.5 installed. In 
addition there are no legal encumbrances on the generated 
code. This aspect makes our system an attractive option 
for those who wish to embed logic into larger systems. 

3.1. Validating Code Generator Correctness 
To ensure the emitters worked properly we downloaded 

a large collection of machine learning samples made 
available from the SGI mirror [SGI] of the machine 
learning data from the University of California at Irvine 
[UCI].  

Though several of the samples needed some adjustment 
to work with our C4.5 installation, we soon had sample 
data from over 110 problem domains. Adjustments 
typically included removing newlines from the middle of 
comment blocks, which our compiler was not designed to 
handle. 

In order to validate that no errors had been introduced 
in the classification logic by way of our transformations, 
we programmatically created an interactive wrapper 
around the C4.5 consultr tool, which is shipped with the 
C4.5 runtime. The largest drawback of the C4.5 runtime is 
that is purely interactive and cannot be used in batch mode. 
The consultr tool uses a pruned rule set to interactively 
prompt a user for values and ultimately makes a 
classification based on those inputs and the rules. To make 
the interactive consltr tool work in a non-interactive way 
we used the “empty” library [EMPTY] from a python 
environment [PYTHON].  

We then used each line of input from the training files 
as input to the interactive consultr utility in parallel with 
the compiled embodiment of the decision tree logic 
generated by our compiler. We found 100% agreement in 
classifications for identical inputs across all training data 
sets we used. 

We should note that in order to make our wrapper 
around the interactive consultr tool match the compiled 
form of the plaintext rules file, we needed to make a one 

line change in C4.5 rule printing algorithm in order to 
increase the decimal precision of the numerical values 
printed into the resulting the rules file by C4.5. We found 
on particularly enlightening data set that required more 
precision than the unmodified human readable rules 
encapsulated. If one were to follow the unmodified rules 
by hand, to the letter, you would obtain unexpected results. 
With the precision enhancements in place, after 
recompiling the more precise rules, 100% agreement was 
achieved.  

3.2. Runtime Performance Analysis 
To analyze the runtime performance of our executable 

classification embodiment, we compare it to the default 
C4.5 runtime to analyze time-to-classification-decision 
using wall-clock time. 

Before beginning with our performance 
characterization, we needed to first evaluate whether our 
decision trees used in testing are generally useful in 
broader contexts beyond our single data set. By analyzing 
the results of classifying each data set across the problem 
domains contained within UCI machine learning 
repository, we concluded that the average size of decision 
trees, as measured in lines, is around 41 lines. The median 
size of all binary classification trees from the same data 
set was measured to be 34, with a standard deviation of 26. 
For the purposes of analysis we can say that 34 line rules 
make a good average case estimation for all data, while 
some of the larger data sets help us evaluate the 
empirically measured worst case performance of our 
system. 

Next we analyzed the relationship of training data size 
to the size of the classifiers decision tree output. As one 
might expect, there is some evidence to suggest that 
longer training data sets yield longer decision trees. It is 
evident from Figure 1 that the relationship is clearly not 
proportional in nature. This is based on the variation 
between the shape of the blue line, which represents 
training data set size, has a shape which is substantially 
different than the shape indicated by circular points 
(which indicates the length of the plaintext rules which 
were generated). We therefore conclude that the 
relationship between training data size and generated rules 
is likely governed by other factors that are not yet 
understood. 

As we can see in the same graph, the number of 
generated rules has very little to do with the size of the 
resulting stand alone classifier program as generated by 
our code generator and compiled by GCC. Here we can 
say that the resulting binary size is, in a small way, 
affected by the type of data being used inside the logic 
statements of the decision tree. This is because the code 
generator causes additional checks, which are necessary 
for correctness, when individual conditionals test 
numerical data.  

Due to the current code emitter design, numerically 
heavy files will generate marginally larger executable due 
to the extra error checking that is used to prevent issues 
when using the C4.5 “?” value. The “?” value when in 
C4.5 indicates that a given value’s measurement is not 
available. As such, during any arithmetic comparison we 
must special case and check for that the numerical value is 
not in fact the “?” value, as the inadvertent treatment of 
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this special “?” value as a float or double type breaks the 
logic as stated in the rules file. In fact, the rules files do 
not specifically state what to do when encountering 
unknown data values, and the proper behavior was only 
determined through trial and error during regression 
testing against training data with the consultr tool shipped 
with C4.5. 

The relationship between training data set size 
(measured in lines), the length of the generated decision 
tree (measured in lines as generated in the pruned rules 
files created by C4.5, and the file size of the resultant 
binary capable of encapsulating the classification logic as 
a stand alone batch style program.  

It should further be noted that all source code examples 
generated during our exhaustive testing of available data 
have yielded C4.5 rule sets which are in a degenerate type 
of conjunctive normal form (those boolean statements 
which are composed of clauses which have been 
exclusively logically AND’ed together). Strictly speaking, 
CNF allows clauses to be Boolean literals or disjunctive 
clauses, but in practice we have only seen the conjunction 
of Boolean literals. This is highly advantageous as the c 
embodiment implementing this logic allows for fast short 
circuit evaluation of statements of this type.  

 

Figure 1. Showing the relationship between training data set size 
(measured in lines), the length of the generated decision tree (measured 
in lines as generated in the pruned rule files created by C4.5), and the file 
size of the resultant binary embodiment of the classification logic as a 
stand-alone batch style program. The X-Axis of this chart are the training 
data sets spaced evenly 

This allowed us to get a sense of typical sizes of the 
decision trees generated across these domains. We have 
concluded that for the data set studied (which we assert is 
likely to be representative of the set of all possible data 
used with the C4.5 binary classifier) the average and 
standard size of the rules generated. We use these figures 
in our runtime analysis comparison below. All 
development and experments were performed on a a 4 
core AMD server with 8GB of RAM running Ubuntu 
Linux (Version 11.04). 

In addition we applied various techniques to optimize 
the performance of our executable embodiment such as 
creating a static binary, altering the GCC compilation 
optimization levels, and using branch prediction 
optimizations to increase the time-to-classification, though 
none of these strategies proved effective enough to 
warrant the additional work. Since our executable 
embodiment stands alone, it requires no additional file 
overhead for reading the names file or data input file.  

One potential approach for speeding up C4.5 would be 
to include a standard input interface to the command line 
tool which would reduce latency caused by the rotational 
media I/O required. To attempt to provide the fairest 
comparison possible, we considered the possibility of 
showing an additional set of time values for the 
interactively wrapped C4.5 run time classifier using files 
backed by a ramdisk that does not suffer from rotational 
latency, however we realized that this would be overkill 
when you consider that C4.5 runs in human scale time for 
classification when using consultr without our expect 
based python wrapper. In addition, any advantage seen by 
going this far, would be equally advantageous when 
loading data into our compiled embodiments, and 
therefore unlikely to prove especially advantageous to 
either approach. 

Furthermore we examined the memory overhead of 
running concurrent instances of the classifiers in parallel. 
We examined the cumulative memory usage of N parallel 
executions of the default C4.5 classifier against the 
compiled classifier embodiment, as well as a single 
program that uses N threads, each of which uses the C-
source code embodiment as the thread payload directly. 
As you might expect, parallel invocations of the C4.5 
runtime classifier demonstrate the largest cumulative 
memory usage. This is because the executable size is 
larger for the C4.5 classifier as compared to the binary 
size of the stand-alone classification function. In addition, 
the C4.5 classifier needs a names file at run time to 
describe the second data file which contains the tuple to be 
classified. 

 

Figure 2. Agreement Between SVM and Compiled C4.5. The blue 
segments at the bottom of each line indicate agreement in classification 
for the same data. The red lines that constitute the top of each bar 
indicate conflicting answers for the same inputs 

Now that a rapid, batch, means for evaluating data with 
a C4.5 derived classifier exists, we set out to compare 
characteristics of support vector machine derived 
classifiers as well. We began by building support vector 
machine models for each of the data files in the C4.5 data 
set archive. A simple script was written to translated data 
sets from C4.5 into the data file format needed by libsvm, 
an open source and freely available support vector 
machine classifier. Initial results show that while we used 
a naïve approach to creating numerical only data files (by 
mapping enumerated types in the C4.5 data into numerical 
constants for the SVM input file) the libsvm-trained 
classifiers did fairly well. In fact over 50% of the 104 data 
sets examined produced better than 90% accuracy with the 
SVM classifier when tested with all known data values 
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(for that data set) as test cases on their first run. 
Furthermore, 67% of the support vector machine models 
worked in more than 80% of the time during exhaustive 
testing. 

We expect that our work will enable us to further 
deduce strategies for converting C4.5 data sets into more 
effective SVM models. We should note, that due to time 
constraints we were not able to perform any SVM scaling 
in efforts to boost success of the SVM models.  

4. Conclusions 
As we can see from the diagrams, our solution 

effectively embodies the logic generated by C4.5 while 
outperforming it in terms of memory usage and processor 
efficiency. We conclude that our solution is an effective 
tool for systems designers who want to include 
classification decisions into high performance or 
massively parallel applications. 

5. A Novel Application 
In addition to testing this technique on previously 

constructed data sets, the authors of this paper have 
constructed a training data set consisting of performance 
metrics derived from virtual machines running on a cloud 
hypervisor. As a practical validation of this approach to 
generating lightweight runtime classifiers that can be 
easily embedded into other software projects, we 
replicated and extended an experiment taken from a paper 
where researchers were able to determine the health and 
status of a virtual object based solely on measures 
available externally to that object based on information 
provided by the hypervisor [Vigilant]. Given the set of 
data that can be collected is limited in this problem 
domain, it can be quite difficult to discriminate between 
ideal and non-ideal behaving virtual objects. The system 
used in Vigilant monitored the hypervisor (an operating 
system which multiplexes other operating system 
instances) resource requests and utilization data collected 
from a virtual machine instance. A decision tree classier 
machine learning method was used to analyze the readings 
at run time and detect problems in situ. The authors note 
that the choice of decision tree was one of numerous 
potential classifiers. They selected a decision tree for their 
work principally because of the training simplicity while 
also noting that the generated trees are easy to interpret by 
human observers. They also found their trained tree to be 
easy to implement with efficient runtime characteristics. 
They authors did note that decisions trees may not be ideal 
however. They remark that in terms of classification 
power, a decision tree is generally considered to be a 
crude precursor to more modern tools such as support 
vector machines described in the text “Pattern 
Classification” by Duda et al [PATCLASS]. They go on 
to specifically state, that based on their experience, a 
decision tree is sufficiently powerful for analyzing virtual 
machine run time metric data. For further information 
about decision trees and their learning we refer the 
interested reader to Mitchell’s “Machine Learning” 
[MITCHELL].  

The experimental results from Vigilant show that 
problems conditions in virtual machines could be detected 
out-of-band with high accuracy while avoiding the pitfalls 
associated with in-band monitoring. The efforts in vigilant 
were specifically targeted at detecting extremely high 
CPU utilization in kernel space. The metrics analyzed by 
the Vigilant team include the following:  
•  The number of times a guest VM was scheduled. 

Utilization of CPU by the guest VM.  
•  Time spent in the “runnable” state. Time spent 

waiting on blocked events.  
•  Amount of running time allocated to the guest virtual 

machine by the scheduler. I/O count  
These very same metrics seem ideal starting points for 

detection of virtual machine over-constraint at runtime by 
a prototype IaaS cloud management system developed by 
our research group. Interestingly, the authors of the 
Vigilant paper experimented with several approaches to 
the problem of out-of-band detection. In one early 
experiment, they deployed several virtual Linux instances 
under the QEMU emulator [QEMU] with each running a 
different type of workload (web service, mail service, etc.) 
started at various times (to vary the overall load on the 
host system). In these experiments, the authors were able 
to classify, using a simple decision tree, the case where the 
workloads from different machines strain the host 
machine’s resources, as opposed to the case where only 
one of the virtual machines was under load. Though they 
omitted the details of that experiment, they indicated that 
their approach was applicable in diverse settings.  

Our team was able to construct a data set of virtual 
machines under light-to-moderate load for web servers 
through the use of HTTP-bench. We then over 
consolidated the virtual machines onto a common host and 
were able to collect data at the crossover point where 
individual http serving virtual machines were experiencing 
dropped connections or unacceptable latencies in response. 
Data beyond this point of inflection were collected and 
tagged as “over-constrained” while the previously 
collected data under idealized or lightly loaded 
consolidation levels were tagged as “nominal”. 

Using the technique described herein, the data was 
classified using SVM and C4.5 and converted into a C 
language embodiment which was further compiled into a 
shared object and loaded into a runtime over-constraint 
detection system. Due to the exceptionally lightweight 
data collection framework devised by our research team 
along with high performance C embodiment produced by 
our code generator was able to correctly classify virtual 
machines as nominal or over-constrained with less than 
one second delay between increasing the synthetic 
workload and application alerting on the operator console. 
Furthermore the system was running continuously while 
the shared object consisting of the learned decision tree 
embodiment was dynamically swapped out, at runtime, 
using an updated instance of the training logic with no 
negative impact to the running cloud management system. 
It is worthy of note that during these tests, the C4.5 and 
SVM trained data sets agreed 100% of the time. The 
further details of this application and the data collection 
framework mentioned are to be presented in a forthcoming 
paper.  
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6. Future Work 
In the near future, the authors intend to apply high 

frequency runtime classifications to various problems 
from smarter water sensors to data center optimization. 
We also see value in extending the emitters to generate 
other languages in order to make this work more easily 
consumed by various projects seeking to use machine 
learning as a component of their software, without 
learning the training nuances of machine learning. 

Just as we have begun to examine head to head 
comparisons of C4.5 with support vector machines, we 
intend to extend this work to also incorporate testing of 
naive Bayesian approaches, Rocchio-style classifiers, k-
nearest neighbor methods [KNN] and others as 
highlighted in the excellent survey by Wu et al [SURVEY] 
when trained on the same data. This work will provide a 
framework for integrating other supervised machine 
learning systems into a cohesive comparative system for 
novel classification system testing. In addition such a 
framework would allow an additional level of support 
when making decisions by comparing the decisions made 
by multiple independent classifiers and making a final 
consensus based on some form of quorum (perhaps 
weighted).   

In addition, we would be remiss if we did not mention 
our desire to attempt this work with the c5.0 decision tree 
classifier as well, due to the claims of increased 
performance, which would only benefit our system. 
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