
Journal of Computer Sciences and Applications, 2015, Vol. 3, No. 3, 61-66
Available online at http://pubs.sciepub.com/jcsa/3/3/1
© Science and Education Publishing
DOI:10.12691/jcsa-3-3-1

Transplanting Binary Decision Trees

Eli M. Dow1,*, Tim Penderghest2,*

1IBM / Clarkson University, Potsdam NY, USA
2Clarkson University, Potsdam NY, USA

*Corresponding author: dowem@clarkson.edu; pendertj@clarkson.edu

Received April 16, 2015; Revised April 29, 2015; Accepted May 04, 2015

Abstract In this paper, we describe a means of compiling binary decision trees as generated by the C4.5 binary
decision tree classifier into high-performance, reusable, stand-alone, run-time classifiers. We demonstrate the
memory savings and run time characteristics of a compiled tree as compared to the traditional use of a C4.5 runtime.
We demonstrate 100% correctness over every input we have available for testing as compared to our own enhanced
version of the classic C4.5 run-time classification routine, consultr. In addition, this work provides a framework for
comparing decision tree classifiers to more in vogue classifiers such as support vector machines as demonstrated
within.

Keywords: binary decision tree, classifier, code-generator, AI

Cite This Article: Eli M. Dow, and Tim Penderghest, “Transplanting Binary Decision Trees.” Journal of
Computer Sciences and Applications, vol. 3, no. 3 (2015): 61-66. doi: 10.12691/jcsa-3-3-1.

1. Introduction
Decision Tree Classifiers (DTC's) are a commonly used

approach for machine learning with application in many
diverse areas such as signal classification, remote sensing,
medical diagnosis, character recognition, expert systems,
and speech recognition. One of the most compelling
features of decision tree classifiers is their capability to
break down a complex decision-making process into a
collection of simpler decisions, thus providing solutions
that are easier for human observers to interpret than those
solutions derived by support vector machines.

This work presents a novel technique that considers the
perspective of application developers who wish to embed
decision tree classifier logic in their own programs
without having a runtime dependency on the classifier
itself. Our main contribution to the art is the presentation
and evaluation of a novel system for embedding the
decision trees generated by one of the most popular
decision tree classifiers, C4.5, into other high-performance
applications, thereby increasing the maximum frequency
of run-time classifications in a fixed duration.

2. Background
The imitable Ross Quinlan, the author of C4.5, has

stated in his own writing, that Carbonell, Michalski and
Mitchell [ML] identify three principal dimensions to
consider when discussing which machine learning systems:

• learning strategies used by the classification algorithm;
• application domain of the system
• representation of knowledge acquired by the system
This paper addresses the latter consideration in a new

way by condensing knowledge representation into its
purest and most succinct form.

While decision tree classifiers are not as in vogue as
more modern classification approaches such as support
vector machines [VAPNIK1][VAPNIK2][LIBSVM], they
are still regarded highly for their effectiveness
[EFFECTIVENESS] and adaptability to various problem
domains.

The C4.5 Binary decision tree classifier is one of the
most commonly known binary decision tree classifiers
among practitioners and researchers of supervised learning
[QUINLAN][IODT]. One strong advantage decision tree
classifiers have over support vector machines is that they
output plain-text decision trees that can be followed fairly
easily even by novices. There is some satisfaction that
comes from understanding the decision algorithm by
following the decision tree manually, through visual
inspection. This is something that is lost when using SVM,
which is a powerful tool but encapsulates decision logic in
ways that are difficult for many to intuit.

Yet one shortcoming of the C4.5 system goes
unaddressed in the literature. While the C4.5 system
performs well when the data being classified is static, and
during situations where classification times are not
incredibly performance sensitive (classifications may take
a few seconds or minutes), it is not suitable for use in high
frequency or high-volume classification systems. In
addition the tool used to make use of the decision tree
logic is interactive and operates in human interaction time.

For high performance classifications system that may
make hundreds of classifications a second, the status quo
is suboptimal. Consider as an example, systems which
classify network traffic behaviors for intrusion detection,
or other mission critical datacenter tasks. At the extreme,
one can envision safety or control systems which need
high performance classifiers to make safety decisions
involving human beings. These systems may be running
on large servers, or on embedded devices.

62 Journal of Computer Sciences and Applications

In light of those considerations, the authors of this
paper believe that research into low-overhead, high-
performance, runtime classification methods is warranted.
Having said that, it makes little sense to attempt to build a
completely new classifier when the actual classification
algorithms in C4.5 are perfectly suitable. In this work, we
present our efforts at encapsulating decision trees, as
generated by an unmodified C4.5 instance, into
embeddable, high-performance classifiers.

3. The C4.5 Code Generator
In computer science, code generation is the process by

which a compiler's code generator converts some
intermediate representation of source code into a machine
executable format.

Sophisticated compilers typically perform multiple
passes over various intermediate forms. This multi-stage
process is used because many algorithms for code
optimization are easier to apply one at a time, or because
the input to one optimization relies on the processing
performed by another optimization. This organization also
facilitates the creation of a single compiler that can target
multiple architectures, as only the last of the code
generation stages (the backend) needs to change from
target to target.

The input to a code generator typically consists of a
parse tree or an abstract syntax tree. A parse tree (also
called a concrete syntax tree)is an ordered and rooted tree
that represents the syntactic structure of a string instance
that belongs to some formal grammar, G of a language L.

The tree represents the syntax of the grammar by treating
all non-terminals of the grammar as interior nodes, while
the terminals of the grammar are treated as leaf nodes.
Parse trees are distinct from abstract syntax trees, which
are colloquially known as just “syntax trees”, in that the
structure and elements that comprise a parse tree more
concretely resemble the syntax of the input language L.

The input language of the system described here is the
output of the C4.5 binary decision tree classifier, which,
after some preprocessing consists solely of a decision tree.
The terminals of the grammar consist of strings
conforming to the regular expression of the form “(N) |
(N/E)” where N and E are both represented by the regular
expression “([0-9]+).[0-9])”. The N is the sum of training
data values, used to train the classifier, which resulted in
that leaf state. While E represents the number of training
data values used to train the classifier which, when input
into the generated rule represented by the ancestor path
through the decision tree, would result in classifications
other than the nominated class.

Rather than implementing a machine specific
instruction emitter ourselves, we opt instead to generate
source code emitter that generate language specific
embodiments of the decision tree that can then be
compiled into machine instructions. We have
implemented emitters for C, C++, and Go programming
languages[C][C++][GO]. The C and C++ embodiments
compile with the venerable open source c compiler GCC
[GCC] while the code emitter by the Go emitter can be
compiled with the 6g compiler created by Google.

Table 1. Comparing an unmodified C4.5 rule set to the C source code embodiment of the same logic
Pruned Rule Set As Generated by C4.5 Generated C Language Classification Logic Embodiment

Final rules from tree 0:
Rule 9:
 synfuels corporation cutback = y
 duty free exports = y
 -> class democrat [97.5%]
Rule 11:
 water project cost sharing = y
 physician fee freeze = u
 -> class democrat [70.7%]
Rule 5:
 physician fee freeze = y
 synfuels corporation cutback = n
 -> class republican [94.8%]
Rule 7:
 physician fee freeze = y
 education spending = y
 duty free exports = n
 -> class republican [94.0%]
Rule 3:
 adoption of the budget resolution = n
 education spending = u
 -> class republican [82.0%]

Rule 13:
 physician fee freeze = u
 mx missile = u
 -> class republican [50.0%]

Default class: democrat

char* binary_decision_tree_classifier(char* handicapped_infants,
 char* water_project_cost_sharing,
 char* adoption_of_the_budget_resolution,
 char* physician_fee_freeze,
 char* el_salvador_aid,
 char* religious_groups_in_schools,
 char* anti_satellite_test_ban,
 char* aid_to_nicaraguan_contras,
 char* mx_missile, char* immigration,
 char* synfuels_corporation_cutback,
 char* education_spending,
 char* superfund_right_to_sue,
 char* crime,
 char* duty_free_exports,
 char* export_administration_act_south_africa)
{
 if ((strncmp(synfuels_corporation_cutback, "y", strlen("y")) == 0) &&
 (strncmp(duty_free_exports, "y", strlen("y")) == 0))
 {
 return "democrat [97.5%]";
 }
 else if ((strncmp(water_project_cost_sharing, "y", strlen("y")) == 0) &&
 (strncmp(physician_fee_freeze, "u", strlen("u")) == 0))
 {
 return "democrat [70.7%]";
 }
 else if ((strncmp(physician_fee_freeze, "y", strlen("y")) == 0) &&
 (strncmp(synfuels_corporation_cutback, "n", strlen("n")) == 0))
 {
 return "republican [94.8%]";
 }
 else if ((strncmp(physician_fee_freeze, "y", strlen("y")) == 0) &&
 (strncmp(education_spending, "y", strlen("y")) == 0) &&
 (strncmp(duty_free_exports, "n", strlen("n")) == 0))
 {
 return "republican [94.0%]";
 }
 else if ((strncmp(adoption_of_the_budget_resolution, "n", strlen("n")) == 0) &&
 (strncmp(education_spending, "u", strlen("u")) == 0))
 {
 return "republican [82.0%]";
 }
 else if ((strncmp(physician_fee_freeze, "u", strlen("u")) == 0) &&
 (strncmp(mx_missile, "u", strlen("u")) == 0))
 {
 return "republican [50.0%]";
 }

 // We did not hit a C4.5 specified base case, so return the default value…
 return (DEFAULT_CLASSIFICATION);
}

 Journal of Computer Sciences and Applications 63

An example of a relevant portion of the source code
emitted can be seen in Table 1, which compares the
decision tree logic from one test case, to the emitted
source code (which compiles with strict warnings and
errors and should therefore be suitable for incorporation
into larger bodies of source code, or used as a stand alone
run time classifier). This core logic is encapsulated within
a single function whose signature is always of the form
binary_decision_tree_classifier() with arguments of type
char* corresponding to each of the measured values from
a C4.5 data file that are in turn named from the values in
the C4.5 names file. The emitted sources also contain code
suitable for loading a correspondingly named data file for
evaluation as a complete stand-alone program.

The design approach to generate well-formed, high-
level language embodiments of the binary decision tree
classification function is beneficial in two ways. The first
is that this approach allows savvy users, such as the type
who are likely to be using C4.5 in the first place, to embed
the classification function directly into their own software.
The second benefit is that the user may opt to continue
processing the generated c-source-code embodiment into a
stand-alone high-performance, re-usable, binary
classification executable. Both the stand-alone executable
and source code are beneficial as they can be distributed to
systems that have no instance of C4.5 installed. In
addition there are no legal encumbrances on the generated
code. This aspect makes our system an attractive option
for those who wish to embed logic into larger systems.

3.1. Validating Code Generator Correctness
To ensure the emitters worked properly we downloaded

a large collection of machine learning samples made
available from the SGI mirror [SGI] of the machine
learning data from the University of California at Irvine
[UCI].

Though several of the samples needed some adjustment
to work with our C4.5 installation, we soon had sample
data from over 110 problem domains. Adjustments
typically included removing newlines from the middle of
comment blocks, which our compiler was not designed to
handle.

In order to validate that no errors had been introduced
in the classification logic by way of our transformations,
we programmatically created an interactive wrapper
around the C4.5 consultr tool, which is shipped with the
C4.5 runtime. The largest drawback of the C4.5 runtime is
that is purely interactive and cannot be used in batch mode.
The consultr tool uses a pruned rule set to interactively
prompt a user for values and ultimately makes a
classification based on those inputs and the rules. To make
the interactive consltr tool work in a non-interactive way
we used the “empty” library [EMPTY] from a python
environment [PYTHON].

We then used each line of input from the training files
as input to the interactive consultr utility in parallel with
the compiled embodiment of the decision tree logic
generated by our compiler. We found 100% agreement in
classifications for identical inputs across all training data
sets we used.

We should note that in order to make our wrapper
around the interactive consultr tool match the compiled
form of the plaintext rules file, we needed to make a one

line change in C4.5 rule printing algorithm in order to
increase the decimal precision of the numerical values
printed into the resulting the rules file by C4.5. We found
on particularly enlightening data set that required more
precision than the unmodified human readable rules
encapsulated. If one were to follow the unmodified rules
by hand, to the letter, you would obtain unexpected results.
With the precision enhancements in place, after
recompiling the more precise rules, 100% agreement was
achieved.

3.2. Runtime Performance Analysis
To analyze the runtime performance of our executable

classification embodiment, we compare it to the default
C4.5 runtime to analyze time-to-classification-decision
using wall-clock time.

Before beginning with our performance
characterization, we needed to first evaluate whether our
decision trees used in testing are generally useful in
broader contexts beyond our single data set. By analyzing
the results of classifying each data set across the problem
domains contained within UCI machine learning
repository, we concluded that the average size of decision
trees, as measured in lines, is around 41 lines. The median
size of all binary classification trees from the same data
set was measured to be 34, with a standard deviation of 26.
For the purposes of analysis we can say that 34 line rules
make a good average case estimation for all data, while
some of the larger data sets help us evaluate the
empirically measured worst case performance of our
system.

Next we analyzed the relationship of training data size
to the size of the classifiers decision tree output. As one
might expect, there is some evidence to suggest that
longer training data sets yield longer decision trees. It is
evident from Figure 1 that the relationship is clearly not
proportional in nature. This is based on the variation
between the shape of the blue line, which represents
training data set size, has a shape which is substantially
different than the shape indicated by circular points
(which indicates the length of the plaintext rules which
were generated). We therefore conclude that the
relationship between training data size and generated rules
is likely governed by other factors that are not yet
understood.

As we can see in the same graph, the number of
generated rules has very little to do with the size of the
resulting stand alone classifier program as generated by
our code generator and compiled by GCC. Here we can
say that the resulting binary size is, in a small way,
affected by the type of data being used inside the logic
statements of the decision tree. This is because the code
generator causes additional checks, which are necessary
for correctness, when individual conditionals test
numerical data.

Due to the current code emitter design, numerically
heavy files will generate marginally larger executable due
to the extra error checking that is used to prevent issues
when using the C4.5 “?” value. The “?” value when in
C4.5 indicates that a given value’s measurement is not
available. As such, during any arithmetic comparison we
must special case and check for that the numerical value is
not in fact the “?” value, as the inadvertent treatment of

64 Journal of Computer Sciences and Applications

this special “?” value as a float or double type breaks the
logic as stated in the rules file. In fact, the rules files do
not specifically state what to do when encountering
unknown data values, and the proper behavior was only
determined through trial and error during regression
testing against training data with the consultr tool shipped
with C4.5.

The relationship between training data set size
(measured in lines), the length of the generated decision
tree (measured in lines as generated in the pruned rules
files created by C4.5, and the file size of the resultant
binary capable of encapsulating the classification logic as
a stand alone batch style program.

It should further be noted that all source code examples
generated during our exhaustive testing of available data
have yielded C4.5 rule sets which are in a degenerate type
of conjunctive normal form (those boolean statements
which are composed of clauses which have been
exclusively logically AND’ed together). Strictly speaking,
CNF allows clauses to be Boolean literals or disjunctive
clauses, but in practice we have only seen the conjunction
of Boolean literals. This is highly advantageous as the c
embodiment implementing this logic allows for fast short
circuit evaluation of statements of this type.

Figure 1. Showing the relationship between training data set size
(measured in lines), the length of the generated decision tree (measured
in lines as generated in the pruned rule files created by C4.5), and the file
size of the resultant binary embodiment of the classification logic as a
stand-alone batch style program. The X-Axis of this chart are the training
data sets spaced evenly

This allowed us to get a sense of typical sizes of the
decision trees generated across these domains. We have
concluded that for the data set studied (which we assert is
likely to be representative of the set of all possible data
used with the C4.5 binary classifier) the average and
standard size of the rules generated. We use these figures
in our runtime analysis comparison below. All
development and experments were performed on a a 4
core AMD server with 8GB of RAM running Ubuntu
Linux (Version 11.04).

In addition we applied various techniques to optimize
the performance of our executable embodiment such as
creating a static binary, altering the GCC compilation
optimization levels, and using branch prediction
optimizations to increase the time-to-classification, though
none of these strategies proved effective enough to
warrant the additional work. Since our executable
embodiment stands alone, it requires no additional file
overhead for reading the names file or data input file.

One potential approach for speeding up C4.5 would be
to include a standard input interface to the command line
tool which would reduce latency caused by the rotational
media I/O required. To attempt to provide the fairest
comparison possible, we considered the possibility of
showing an additional set of time values for the
interactively wrapped C4.5 run time classifier using files
backed by a ramdisk that does not suffer from rotational
latency, however we realized that this would be overkill
when you consider that C4.5 runs in human scale time for
classification when using consultr without our expect
based python wrapper. In addition, any advantage seen by
going this far, would be equally advantageous when
loading data into our compiled embodiments, and
therefore unlikely to prove especially advantageous to
either approach.

Furthermore we examined the memory overhead of
running concurrent instances of the classifiers in parallel.
We examined the cumulative memory usage of N parallel
executions of the default C4.5 classifier against the
compiled classifier embodiment, as well as a single
program that uses N threads, each of which uses the C-
source code embodiment as the thread payload directly.
As you might expect, parallel invocations of the C4.5
runtime classifier demonstrate the largest cumulative
memory usage. This is because the executable size is
larger for the C4.5 classifier as compared to the binary
size of the stand-alone classification function. In addition,
the C4.5 classifier needs a names file at run time to
describe the second data file which contains the tuple to be
classified.

Figure 2. Agreement Between SVM and Compiled C4.5. The blue
segments at the bottom of each line indicate agreement in classification
for the same data. The red lines that constitute the top of each bar
indicate conflicting answers for the same inputs

Now that a rapid, batch, means for evaluating data with
a C4.5 derived classifier exists, we set out to compare
characteristics of support vector machine derived
classifiers as well. We began by building support vector
machine models for each of the data files in the C4.5 data
set archive. A simple script was written to translated data
sets from C4.5 into the data file format needed by libsvm,
an open source and freely available support vector
machine classifier. Initial results show that while we used
a naïve approach to creating numerical only data files (by
mapping enumerated types in the C4.5 data into numerical
constants for the SVM input file) the libsvm-trained
classifiers did fairly well. In fact over 50% of the 104 data
sets examined produced better than 90% accuracy with the
SVM classifier when tested with all known data values

 Journal of Computer Sciences and Applications 65

(for that data set) as test cases on their first run.
Furthermore, 67% of the support vector machine models
worked in more than 80% of the time during exhaustive
testing.

We expect that our work will enable us to further
deduce strategies for converting C4.5 data sets into more
effective SVM models. We should note, that due to time
constraints we were not able to perform any SVM scaling
in efforts to boost success of the SVM models.

4. Conclusions
As we can see from the diagrams, our solution

effectively embodies the logic generated by C4.5 while
outperforming it in terms of memory usage and processor
efficiency. We conclude that our solution is an effective
tool for systems designers who want to include
classification decisions into high performance or
massively parallel applications.

5. A Novel Application
In addition to testing this technique on previously

constructed data sets, the authors of this paper have
constructed a training data set consisting of performance
metrics derived from virtual machines running on a cloud
hypervisor. As a practical validation of this approach to
generating lightweight runtime classifiers that can be
easily embedded into other software projects, we
replicated and extended an experiment taken from a paper
where researchers were able to determine the health and
status of a virtual object based solely on measures
available externally to that object based on information
provided by the hypervisor [Vigilant]. Given the set of
data that can be collected is limited in this problem
domain, it can be quite difficult to discriminate between
ideal and non-ideal behaving virtual objects. The system
used in Vigilant monitored the hypervisor (an operating
system which multiplexes other operating system
instances) resource requests and utilization data collected
from a virtual machine instance. A decision tree classier
machine learning method was used to analyze the readings
at run time and detect problems in situ. The authors note
that the choice of decision tree was one of numerous
potential classifiers. They selected a decision tree for their
work principally because of the training simplicity while
also noting that the generated trees are easy to interpret by
human observers. They also found their trained tree to be
easy to implement with efficient runtime characteristics.
They authors did note that decisions trees may not be ideal
however. They remark that in terms of classification
power, a decision tree is generally considered to be a
crude precursor to more modern tools such as support
vector machines described in the text “Pattern
Classification” by Duda et al [PATCLASS]. They go on
to specifically state, that based on their experience, a
decision tree is sufficiently powerful for analyzing virtual
machine run time metric data. For further information
about decision trees and their learning we refer the
interested reader to Mitchell’s “Machine Learning”
[MITCHELL].

The experimental results from Vigilant show that
problems conditions in virtual machines could be detected
out-of-band with high accuracy while avoiding the pitfalls
associated with in-band monitoring. The efforts in vigilant
were specifically targeted at detecting extremely high
CPU utilization in kernel space. The metrics analyzed by
the Vigilant team include the following:
• The number of times a guest VM was scheduled.

Utilization of CPU by the guest VM.
• Time spent in the “runnable” state. Time spent

waiting on blocked events.
• Amount of running time allocated to the guest virtual

machine by the scheduler. I/O count
These very same metrics seem ideal starting points for

detection of virtual machine over-constraint at runtime by
a prototype IaaS cloud management system developed by
our research group. Interestingly, the authors of the
Vigilant paper experimented with several approaches to
the problem of out-of-band detection. In one early
experiment, they deployed several virtual Linux instances
under the QEMU emulator [QEMU] with each running a
different type of workload (web service, mail service, etc.)
started at various times (to vary the overall load on the
host system). In these experiments, the authors were able
to classify, using a simple decision tree, the case where the
workloads from different machines strain the host
machine’s resources, as opposed to the case where only
one of the virtual machines was under load. Though they
omitted the details of that experiment, they indicated that
their approach was applicable in diverse settings.

Our team was able to construct a data set of virtual
machines under light-to-moderate load for web servers
through the use of HTTP-bench. We then over
consolidated the virtual machines onto a common host and
were able to collect data at the crossover point where
individual http serving virtual machines were experiencing
dropped connections or unacceptable latencies in response.
Data beyond this point of inflection were collected and
tagged as “over-constrained” while the previously
collected data under idealized or lightly loaded
consolidation levels were tagged as “nominal”.

Using the technique described herein, the data was
classified using SVM and C4.5 and converted into a C
language embodiment which was further compiled into a
shared object and loaded into a runtime over-constraint
detection system. Due to the exceptionally lightweight
data collection framework devised by our research team
along with high performance C embodiment produced by
our code generator was able to correctly classify virtual
machines as nominal or over-constrained with less than
one second delay between increasing the synthetic
workload and application alerting on the operator console.
Furthermore the system was running continuously while
the shared object consisting of the learned decision tree
embodiment was dynamically swapped out, at runtime,
using an updated instance of the training logic with no
negative impact to the running cloud management system.
It is worthy of note that during these tests, the C4.5 and
SVM trained data sets agreed 100% of the time. The
further details of this application and the data collection
framework mentioned are to be presented in a forthcoming
paper.

66 Journal of Computer Sciences and Applications

6. Future Work
In the near future, the authors intend to apply high

frequency runtime classifications to various problems
from smarter water sensors to data center optimization.
We also see value in extending the emitters to generate
other languages in order to make this work more easily
consumed by various projects seeking to use machine
learning as a component of their software, without
learning the training nuances of machine learning.

Just as we have begun to examine head to head
comparisons of C4.5 with support vector machines, we
intend to extend this work to also incorporate testing of
naive Bayesian approaches, Rocchio-style classifiers, k-
nearest neighbor methods [KNN] and others as
highlighted in the excellent survey by Wu et al [SURVEY]
when trained on the same data. This work will provide a
framework for integrating other supervised machine
learning systems into a cohesive comparative system for
novel classification system testing. In addition such a
framework would allow an additional level of support
when making decisions by comparing the decisions made
by multiple independent classifiers and making a final
consensus based on some form of quorum (perhaps
weighted).

In addition, we would be remiss if we did not mention
our desire to attempt this work with the c5.0 decision tree
classifier as well, due to the claims of increased
performance, which would only benefit our system.

Acknowledgments
The authors of this paper would like to thank the IBM

Corporation for generous support of this research. We
would also like to thank the Clarkson University Open
Source Institute for hosting the development and test
servers used for this research.

References
[1] GCC - http://gcc.gnu.org/.
[2] LIBSVM - Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a

library for support vector machines. ACM Transactions on
Intelligent Systems and Technology, 2:27:1-27:27, 2011. Software
available online:
http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[3] VAPNIK1 - Vapnik, V. N. (1995). The nature of statistical
learning theory. New York: Springer.

[4] VAPNIK2 - Vapnik, V. N. (1998). Statistical learning theory.
New York: Wiley.

[5] EFFECTIVENESS - Mahesh Pal, Paul M Mather, An assessment
of the effectiveness of decision tree methods for land cover
classification, Remote Sensing of Environment, Volume 86, Issue
4, 30 August 2003, Pages 554-565.

[6] QUINLAN - J. Ross Quinlan: C4.5: Programs for Machine
Learning Morgan Kaufmann 1993.

[7] IODT - J. R. Quinlan. 1986. Induction of Decision Trees. Mach.
Learn. 1, 1 (March 1986), 81-106.

[8] C - ANSI X3.159-1989 "Programming Language C.
[9] C++ - C++ standard, 14882:2011.
[10] GO – http://golang.org.
[11] Python – http://www.python.org.
[12] PATCLASS - Pattern Classification, 2nd Edition Richard O. Duda,

Peter E. Hart, David G. Stork ISBN: 978-0-471-05669-0 680
pages November 2000, ©2001.

[13] MITCHELL - Machine Learning, Tom Mitchell, McGraw Hill,
1997. http://www.cs.cmu.edu/~tom/mlbook.html.

[14] QEMU - Fabrice Bellard. 2005. QEMU, a fast and portable
dynamic translator. In Proceedings of the annual conference on
USENIX Annual Technical Conference (ATEC '05). USENIX
Association, Berkeley, CA, USA, 41-41.

[15] SGI - . http://www.sgi.com/tech/mlc/db/.
[16] UCI - http://archive.ics.uci.edu/ml/.
[17] EMPTY - http://empty.sourceforge.net/.
[18] ML - Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell

(1983), Machine Learning: An Artificial Intelligence Approach,
Tioga Publishing Company.

[19] SURVEY - Wu et al. Top 10 algorithms in data mining.
Knowledge and Information Systems, 14(2008), 1: 1-37.

