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Abstract  This paper aims to demonstrate the utility of fuzzy set theory in the design process of a diabetes 

management system that enables patients to make short term alterations (particularly lifestyle) to their overall 

regimen as required. The model is a Mamdani Fuzzy Inference System (FIS) configured through domain specific 

information from experts and recognised diabetes management algorithms. The FIS takes a multi-input multi-output 

(MIMO) design approach with seven inputs variables (age, gender, weight, height, blood glucose (BG), exercise and 

diet) and three outputs (glycatedhaemoglobin (A1c), exercise and diet level assessments). Goodness of fit test was 

conducted based on Mean Square Error (MSE), Normalised Mean Square Error (NMSE) and Normalised Root 

Mean Square Error (NRMSE) between observed/advised and predicted output values. Overall MSE of 0.0899 shows 

good fit. For each of the output pairs (A1c, exercise and diet), NRMSE (0.7387, 0.7881 and 0.3716) and NMSE 

(0.9317, 0.9551 and 0.6051) shows good fit for A1c and exercise, but poor fit for diet. Intelligent models of this sort 

can help simplify management information for diabetes patients, reduce routine workload for clinicians and allow 

them to focus more on critical issues. Fully developed, this system can be used to build a database of diabetes 

management cases that includes daily life event information, ultimately leading to automated care for patients 

through technology. 
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1. Introduction 

Type 2 diabetes management requires a strict diet and 

exercise regimen agreed upon between patients and 

clinicians in order to stabilise blood glucose (BG) level 

and maintain good health [1]. Conventional diabetes care 

delivery adopts a long-term feedback system, involving 

structured educational programmes and care plan 

adjustments during routine checks (usually 3 – 6 months 

intervals). However, the monitored indicators are dynamic 

in nature, requiring short-term alterations to compensate 

for any change in a patient’s scheduled regimen. It is 

difficult for a patient to ascertain when a change is 
required, the nature of the change, time to implement any 

change, the required magnitude or even the resultant effect 

of any change applied. Even more difficult is developing a 

computational model that deals with these issues, due to 

the numerous metabolic reactions that occur within the 

human body [2]. For instance, changes in glucose 

concentration are dependent upon heart rate (HR) [3,4], 

insulin sensitivity [5,6], glucose production by the liver 

[7], and a myriad of hormonal interactions [8]. Artificial 

Intelligence (AI) holds great promise in resolving this 

issue. The model described in this paper, based on 

Mamdani Fuzzy Inference system (FIS) was configured 

using expert knowledge and management algorithms 
calibrated through large datasets of patient specific 

information. The model is intended to provide short-term 

(daily) interpretation of monitoring data, in form of 

personalised decision support for achieving personal 

health goals. That is, turning endless daily data into useful 

insight so immediate changes can be made to compensate 

for any regimen disturbance. Seven input variables were 

used including patient demographic information (age and 

gender), patient specific information (weight and height) 

and daily regimen event types (i.e., calorie intake, HR and 

BG. To reduce the number of rules required to structure 
the model appropriately, the weight and height variables 

were interlaced with the other five variables using 

equations from related research studies to enable 

personalised outputs.  

2. Context 

Diabetes is a hereditary or developmental condition 

caused by the malfunctioning of the pancreas, which 
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secretes the hormone insulin, resulting in elevated glucose 

concentration in the blood. In some cases, the body cells 

fail to respond to the normal action of insulin (i.e., insulin 

resistance). There are two main types of diabetes – Type 1 

and Type 2. Type 1 is the least common, developed when 

the body cannot produce any insulin and falls outside the 

scope of our study. Type 2 however, develops when the 

body can still produce some insulin, but not enough is 
made available. For many diagnosed cases of type 2, the 

first approach to treatment is through BG monitoring 

several times a day, and lifestyle adjustments to improve 

readings [9]. In the UK, this treatment approach is 

delivered through structured educational programmes, 

care planning and routine checks (3 – 6 months intervals) 

to identify and apply necessary changes to a course of 

treatment regimes. A common educational programme 

applicable to type 2 cases is DESMOND; an acronym for 

diabetes education and self-management for on-going and 

newly diagnosed [10].  
As noted earlier, management may be compromised 

due to insufficient data and in some cases, patients’ 

inability to interpret available data. However, several 

research attempts using AI techniques have been reported 

that may remove some of these burdens from patients. 

One notable example is the automated insulin dosage 

advisor (AIDA), a mathematical model intended for type 1 

(insulin dependent) diabetic patients to simulate the 

effects of changes in insulin and diet, on BG profile 

[11,12]. However, the authors made clear the limitations 

of this model and declared it insufficiently accurate for 
patient use in BG – insulin regulation. Despite this 

limitation, the authors believe there is still value in its 

capability as an educational tool for diabetics, carers or 

even researchers. For instance, the artificial neural 

network (ANN) based model for BG prediction by 

Robertson et al. [6] was trained with simulated data from 

AIDA. Their main contribution is to quickly detect 

hyperglycaemic or hypoglycaemic episodes from BG 

predictions, using insulin dosage and diet. Dazzi et al. [13] 

presented a model also aimed at type 1 diabetes 

management with similar contribution using neuro-fuzzy 

method. Their aim was to adjust insulin dosage based on 
desired BG levels.  

Whereas type 1 diabetes has received a lot of 

interesting research in terms of electronic management 

solutions, type 2 (non – insulin) diabetes is still under 

researched; perhaps due to the numerous factors to 

consider in its management. In type 2 diabetes 

management, emphases are more on BG interaction with 

lifestyle (exercise and diet) data, and not the usual insulin 

dosage data as in type 1 cases. Majority of published 

solutions in this area are either medically led with no 

computational element [14-18], or presented as a black 
box [19-23]; thus internal computational elements or 

approach were hidden and validation were mostly 

descriptive based on user experience [20,21]. In this paper, 

we present a detailed explanation and validation of a 

model, intended for early type 2 (non - insulin) diabetes 

management. The model uses a Mamdani Fuzzy Inference 

System (FIS) configured through domain specific 

information from experts [24,25,26] and recognised 

diabetes management algorithms [27,28,29]. It is 

important to note that this study is not intended to review 

or compare existing AI approaches that may be applicable 

in this domain. Rather, the authors aim to describe and 

validate explicitly, the utility of FIS in dealing with the 

incomplete and disjoint datasets involved in type 2 

diabetes management. Details of the internal configuration 

are presented in the next section. 

3. Method 

We used FIS because of its capability in dealing with 

data imprecision and quantification that are common in 

diabetes management. For instance, BG values from 

glucose monitors are not particularly precise and patients 

might find it difficult to quantify and/or associate the 

effects of the BG values with the desired health outcome, 

given that other life events (e.g., exercise and diet) have to 

be taken into account. FIS formalises these values by 

grouping them into fuzzy sets using Membership 

Functions (MF); and forming relationships with the fuzzy 

sets to produce outputs. Basically, using fuzzy clusters of 
similarity (fuzzy sets) we can hide unwanted values, 

ultimately leading to systems where the grouped values 

can be used to focus analysis on aspects of interest to the 

user. For instance, to determine the effect of a person’s 

BG value towards the desired output, MFs would locate 

where the value lies within the fuzzy sets and the 

relationships would locate the assigned output space that 

defines the output achieved. The fuzzy sets exhibit two 

different shapes for membership functions (triangular & 

trapezoidal) as shown in Table 1. The relationships are 

sets of fuzzy rules (n = 165) used for inference and are 

stored within the FIS knowledge base (see Figure 1). Like 
the model described in this paper, some FIS are based on 

rules obtained by eliciting information from experts [30], 

although data driven approaches exist where rules are 

extracted automatically from empirical data based on 

trends [31,32]. The rules are based on expert knowledge in 

diabetes management [24,25,26]. The parameters used for 

fuzzy set classification are based on official research 

studies about the characteristics of the input variables in 

diabetes management [27,28,29]. 

FIS usually take two forms, namely: multiple-input 

multiple-output (MIMO), where the system returns several 
outputs based on the inputs; and multiple-input single-

output (MISO), where only one output is returned from 

multiple inputs [33]. The model presented in this paper is 

based on MIMO with seven inputs and three outputs. The 

inputs include five primary variables (age, gender, HR, 

BG and calorie intake) and two auxiliary variables (weight 

and height). Table 2 shows the input variables with 

associated fuzzy set classifications. The determined output 

variables namely; exercise level, calorie level and glycated 

haemoglobin (commonly known as HBA1C or A1C) are 

shown in Table 3, each with a set of linguistic values. The 
auxiliary variables are nested into the primary ones with a 

set of rules within the FIS knowledge base. 

We determined exercise level based on percentage of 

maximum HR, calculated using equation (1) by Keytel et 

al. [24]; and classified in accordance with the 

compendium of physical activity measures as reported by 

Ainswort et al. [25] and Mayo Clinic recomendations [29].  

 208 (0.7 )Maximumheartrate xAge   (1) 
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We determined A1c based on daily average BG 

measurements; calculated and classified in accordance 

with the A1C-Derived Average Glucose (ADAG) linear 

equation (2) by Nathan et al. [27]. This representation will 

help patients more directly see the difference and/or 

relationship between their daily BG measurements and 

their overall glucose management performance in terms of 

A1c.  

 28.7 1 46.7XA C eAG  (2) 

We determined calorie level based on current UK 

calorie consumption guidelines [34], i.e., 2000 calories for 

women and 2550 for men. However, these values can vary 
depending on individual factors such as age, gender, size 

(i.e., weight and height) and physical activity level (PAL). 

For personalisation, we used estimated average 

requirement (EAR) to determine calorie level; calculated 

using energy equations (3) and (4). The output will help 

patients more directly see the difference and/or 

relationship between their daily calorie consumption and 

recommended limits.  

 EAR RMR PAL   (3) 

PAL values were adopted from the most recent FAO 

report on human energy requirements [26]. RMR (Resting 

Metabolic Rate) values representing the energy required 

for body metabolism while at rest were calculated from 

Mifflin-St Jeor [28] predictive energy equation (4) at 

weights equivalent to a body mass index (BMI) of 22.5 

kg/m2 and current mean heights for age derived from 
Health Survey for England 2012 [35]. 

    

_ 66.47 (13.75 ) (5 )(6.76 )

_  655.1 9.56 1.85 4.68

m RMR wt ht age

f RMR wt ht age

     

     
(4) 

Although these values are for average adults (not 

diabetes patients), our decision to use them follows the 

concept that healthy nutrition recommendations for the 

general public are also appropriate for persons with type 2 
diabetes [36]. We preferred the Mifflin-St Jeor equation 

over others because it gives the most reliable result [37]. 

Table 1. Triangular and Trapezoidal Fuzzy shapes with associated MFs 
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Figure 1. The Fuzzy Inference System (FIS) 
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Table 2. Input variables and associated fuzzy set classifications 

Input 

Variables 
Fuzzy set classifications 

Gender 0 = “Male” and 1 = “Female” 

Age ≤ 35 = “Young”; 30 – 50 = “Mid-age”; ≥ 50 = “Old” 

HR ≤ 55% = “Light”; 50 – 75% = “Moderate”; ≥ 70% = “Viguorous” 

BG 
≤ 7.2 = “7”; 6.8 – 8.4 = “7.8”; 8.2 – 9.2 = “8.6”; 9 – 9.9 = “9.4”; 9.7 – 10.7 = “10.1”; 10.5 – 11.6 = “10.9”; 11.4 – 12.4 = “11.8”; 12.2 – 

13.2 = “12.6”; ≥ 13 = “13.4”. 

Calorie 

intake 

≤ 1300 = “1200”; 1200 - 1700 = “1600”; 1500 – 1900 = “1800”; 1800 – 2100 = “2000”; 2000 – 2300 = “2200”; 2200 – 2500 = “2400”; 

2400 – 2700 = “2600”; 2600 - 2900 = “2800”; ≥ 2800= “3000”. 

Table 3. Output variables and associated linguistic values 

Output Variable Linguistic Values 

A1c A1c values between 4 – 12% 

Exercise level < Limit; Within guide limit; > Limit 

Calorie level < Limit; Within guide limit; > Limit 

4. Theoretical Usage Scenario 

In practice, users would be presented with a web based 

user interface where the required input data can be entered 

and outputs displayed as shown in Figure 2. Gender rarely 

changes and age runs with calendar, so single entry is 
required for both input variables. However, periodic 

entries would be required for the remaining five input 

variables; six months for weight and height, and daily 

(preferably before bed time) for calorie intake, average 

HR and BG. 

Outputs are displayed for each entry period in form of 

advice to indicate any issue(s) and/or required alteration(s) 

to regimen. In addition, the FIS updates the database with 

every entry and corresponding outputs for each user. Such 

database would be useful in future improvements to the 

model and facilitate automated decision support as 

proposed in our previous research work [38]. 

 

Figure 2. Context Diagram of the model usage 

5. Evaluation and Limitations 

Evaluation was limited due to resource constraints. 

Small scale evaluation of the model capability was 

conducted using five weeks monitoring data of 35 subjects 

with type 2 diabetes, including continuous BG 
measurements (CBGM) data from Abbott Freestyle 

Navigator II [39]. The dataset includes 48 features with 

blind assessments of achievements. Only the relevant 

features for this evaluation (i.e., age, gender, weight, 

height, HR, Diet, CBGM and A1c) were extracted with 

advised achievement levels for diet and exercise. For BG 

input variable we used average daily CBGM. Weight, 

height, HR and diet values were only monitored once 

within the five week period, so we only used one day 

extract per subject for this evaluation. We used the 

supplied A1c values along with diet and exercise 

assessments as outputs. Details of assessment method 
were not supplied with the data.  

To establish how well the model performed, we 

conducted goodness of fit tests [40] between predicted 

values x and observed/advised values y, using the 

following cost functions:  

1. Mean square error (MSE) 

2. Normalised root mean square error (NRMSE) 

3. Normalised mean square error (NMSE) 

MSE, NRMSE and NMSE costs vary between -∞ (bad 

fit) to 1 (good fit). Figure 3 shows plots of the measured 

data pairs. If the cost function is equal to zero, then x is no 
better than a straight line at matching y.  

The MSE measured as the average sum of the squares 

of the difference between the estimated and actual values 

is given by (5), where x is a vector of n predictions, and y 

is the vector of the true values. 

 

Figure 3. Advised Vs Predicted Output 
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Results show overall MSE of 0.0899 which indicates 

minimal variance between the output data pairs, thus a 

good fit. Table 4 shows the NMSE and NRMSE results. 

The NMSE, derived from MSE is given by (6). 
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The NRMSE incorporates some of the embedded 

variability of MSE by using the square root of MSE (i.e., 

RMSE) as shown in (7) and (8). 
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Table 4. Goodness of Fit evaluation 

Output Variables NRMSE NMSE  

A1c 0.7387 0.9317 

Exercise Level 0.7881 0.9551 

Diet Level 0.3716 0.6051 

From the table, results show good fit for A1c and 

Exercise level predictions. However, results for Diet level 

were very poor. This result could be due to a number of 
reasons e.g., test data veracity, assessment criteria used by 

Abbott etc. 

6. Conclusion and Future Work 

Intelligent models of the type discussed can help 

simplify management information for diabetes patients. 

This could reduce routine workload for clinicians and 

allow them to focus more on critical events. During 

routine check-up, people with diabetes would normally 

receive around 15 – 20 minutes of interaction with 

clinicians who must quickly evaluate the patient's health 
status and offer therapeutic advice. This time is certainly 

not sufficient, considering the volume of management data 

that needs to be processed. Also, clinicians would 

normally rely on self-reported information of preceding 

lifestyle behaviour from patients. Whereas BG readings 

are automatically recorded during daily monitoring and so 

readily available, lifestyle data are rarely recorded daily 

by patients. The model described in this paper would 

enable more efficient data collection from patients, and 

logical decision from the care team. A possible future for 

the model is in building a database of diabetes 
management data that includes daily life event 

information. Such level of data tracking is known to yield 

better results [41] and would prove invaluable in 

developing a case repository for automated case based 

decision support systems as proposed in our previous 

research work [38]. Of course such systems would (in 

some cases) lack clinical intuition especially when 

presented with new or complex cases. However, the 

ability to learn and adapt gives these systems greater 

potential for dealing with patients faster than the 

conventional support method, ultimately leading to more 

efficient healthcare support from the care team.  

The model described in this paper is a theoretical 

demonstrator of a planned system. Developing and testing 

the model in a real user environment will be the next step. 

In the future, patients will be able to upload their data 

online and monitor outcomes. Data acquired from this 

would be utilised in the second phase of the overall project 
(see Figure 1 in [38]) to provide support for clinicians. 

Acknowledgement 

We would like to thank the Royal Liverpool & 

Broadgreen University NHS Hospitals Trust (RLBUHT) 

and the Faculty of Technology & Environment at 

Liverpool John Moores University for providing full 

funding for this Phd research work. We also want to thank 

Abbott Diabetes Care, UK for providing data for this work. 

Professor JitenVora, consultant in Diabetes and 
Endocrinology at RLBUHT provides clinical supervision 

for this work. 

References 

[1] J. Brand-Miller, K. Foster-Powell, S. Colagiuri, and A. Barclay, 

The New Glucose Revolution for Diabetes: The Definitive Guide 

to Managing Diabetes and Prediabetes Using the Glycemic Index. 

Da Capo Press, 2007. 

[2] K. Zierler, “Whole body glucose metabolism,” Am. J. Physiol.-

Endocrinol. Metab., vol. 276, no. 3 Pt 1, pp. E409-E426, 1999. 

[3] J. P. Singh, M. G. Larson, C. J. O’Donnell, P. F. Wilson, H. Tsuji, 

D. M. Lloyd-Jones, and D. Levy, “Association of hyperglycemia 

with reduced heart rate variability (The Framingham Heart 

Study).,” Am. J. Cardiol., vol. 86, no. 3, pp. 309-12, Aug. 2000. 

[4] R. J. Sigal, S. J. Fisher, J. B. Halter, M. Vranic, and E. B. Marliss, 

“Glucoregulation during and after Intense Exercise: Effects of β-

Adrenergic Blockade in Subjects with Type 1 Diabetes Mellitus,” 

J. Clin. Endocrinol. Metab., vol. 84, no. 11, pp. 3961-3971, 1999. 

[5] E. D. Lehmann and T. Deutsch, “A Physiological Model Of 

Glucose-insulin Interaction,” in Proceedings of the Annual 

International Conference of the IEEE Engineering in Medicine 

and Biology Society Volume 13: 1991, 1991, vol. 13, no. 5, pp. 

2274-2275. 

[6] G. Robertson, E. D. Lehmann, W. Sandham, and D. Hamilton, 

“Blood Glucose Prediction Using Artificial Neural Networks 

Trained with the AIDA Diabetes Simulator: A Proof-of-Concept 

Pilot Study,” J. Electr. Comput. Eng., vol. 2011, pp. 1-11, 2011. 

[7] R. C. Nordlie, J. D. Foster, and A. J. Lange, “Regulation of 

glucose production by the liver.,” Annu. Rev. Nutr., vol. 19, pp. 

379-406, Jan. 1999. 

[8] E. B. Marliss, E. Simantirakis, P. D. Miles, C. Purdon, R. 

Gougeon, C. J. Field, J. B. Halter, and M. Vranic, 

“Glucoregulatory and hormonal responses to repeated bouts of 

intense exercise in normal male subjects.,” J. Appl. Physiol., vol. 

71, no. 3, pp. 924-33, Sep. 1991. 

[9] D. M. Nathan, J. B. Buse, M. B. Davidson, E. Ferrannini, R. R. 

Holman, R. Sherwin, and B. Zinman, “Medical management of 

hyperglycemia in type 2 diabetes: a consensus algorithm for the 

initiation and adjustment of therapy: a consensus statement of the 

American Diabetes Association and the European Association for 

the Study of Diabetes.,” Diabetes Care, vol. 32, no. 1, pp. 193-203, 

Jan. 2009. 

[10] C. Tidy, “Diabetes Education and Self-management Programmes,” 

2010. [Online]. Available: 

http://medical.cdn.patient.co.uk/pdf/1593.pdf. [Accessed: 25-Sep-

2013]. 

[11] E. D. Lehmann and T. Deutsch, “AIDA: An Automated Insulin 

Dosage Advisor,” in Proc Annu Symp Comput Appl Med Care, 

1992, pp. 818-819. 



 Journal of Computer Sciences and Applications 45 

[12] E. D. Lehmann, T. Deutsch, E. R. Carson, and P. H. Sönksen, 

“AIDA: an interactive diabetes advisor.,” Comput. Methods 

Programs Biomed., vol. 41, no. 3-4, pp. 183-203, Jan. 1994. 

[13] D. Dazzi, F. Taddei, a Gavarini, E. Uggeri, R. Negro, and a 

Pezzarossa, “The control of blood glucose in the critical diabetic 

patient: a neuro-fuzzy method.,” J. Diabetes Complications, vol. 

15, no. 2, pp. 80-7, 2001. 

[14] J. Tuomilehto, J. Lindstrom, J. G. Eriksson, T. T. Valle, H. 

Hamalainen, P. Ilanne-Parikka, S. Keinanen-Kiukaanniemi, M. 

Laakso, A. Louheranta, M. Rastas, V. Salminen, and M. Uusitupa, 

“Prevention of type 2 Diabetes Mellitus by changes in lifestyle 

among subjects with impared glucose tolerance,” New English J. 

Med., vol. 344, no. 18, pp. 1343-1350, 2001. 

[15] J. Lindstrom and J. Tuomilehto, “The Diabetes Risk Score: A 

practical tool to predict type 2 diabetes risk,” Diabetes Care, vol. 

26, no. 3, pp. 725-731, 2003. 

[16] D. M. Nathan, “Initial Management of Glycemia in Type 2 

Diabetes Mellitus,” N. Engl. J. Med., vol. 347, no. 17, pp. 1342-

1349, 2002. 

[17] E. Årsand, D. H. Frøisland, S. O. Skrøvseth, T. Chomutare, N. 

Tatara, G. Hartvigsen, and J. T. Tufano, “Mobile health 

applications to assist patients with diabetes: lessons learned and 

design implications.,” J. Diabetes Sci. Technol., vol. 6, no. 5, pp. 

1197-206, Sep. 2012. 

[18] O. El-Gayar, P. Timsina, N. Nawar, and W. Eid, “Mobile 

Applications for Diabetes Self-Management: Status and Potential,” 

J. Diabetes Sci. Technol., vol. 7, no. 1, pp. 247-262, Jan. 2013. 

[19] A. M. Bell, S. J. Fonda, M. S. Walker, V. Schmidt, and R. a 

Vigersky, “Mobile phone-based video messages for diabetes self-

care support.,” J. Diabetes Sci. Technol., vol. 6, no. 2, pp. 310-9, 

Mar. 2012. 

[20] M. Albisser, “A graphical user interface for diabetes management 

that integrates glucose prediction and decision support.,” Diabetes 

Technol. Ther., vol. 7, no. 2, pp. 264-73, Apr. 2005. 

[21] O. Ferrer-Roca, K. Franco Burbano, a Cárdenas, P. Pulido, and a 

Diaz-Cardama, “Web-based diabetes control.,” J. Telemed. 

Telecare, vol. 10, no. 5, pp. 277-81, Jan. 2004. 

[22] J. U. Poulsen, A. Avogaro, F. Chauchard, C. Cobelli, R. Johansson, 

L. Nita, M. Pogose, L. Del Re, E. Renard, S. Sampath, F. Saudek, 

M. Skillen, and J. Soendergaard, “A diabetes management system 

empowering patients to reach optimised glucose control: from 

monitor to advisor.,” in Conference proceedings: ... Annual 

International Conference of the IEEE Engineering in Medicine 

and Biology Society. IEEE Engineering in Medicine and Biology 

Society. Conference, 2010, vol. 2010, pp. 5270-1. 

[23] E. Otto, C. Semotok, J. Andrysek, and O. Basir, “An intelligent 

diabetes software prototype: predicting blood glucose levels and 

recommending regimen changes.,” Diabetes Technol. Ther., vol. 2, 

no. 4, pp. 569-76, Jan. 2000. 

[24] L. R. Keytel, J. H. Goedecke, T. D. Noakes, H. Hiiloskorpi, R. 

Laukkanen, L. van der Merwe, and E. V Lambert, “Prediction of 

energy expenditure from heart rate monitoring during submaximal 

exercise.,” J. Sports Sci., vol. 23, no. 3, pp. 289-97, Mar. 2005. 

[25] B. E. Ainsworth, W. L. Haskell, M. C. Whitt, M. L. Irwin, a M. 

Swartz, S. J. Strath, W. L. O’Brien, D. R. Bassett, K. H. Schmitz, 

P. O. Emplaincourt, D. R. Jacobs, and a S. Leon, “Compendium of 

physical activities: an update of activity codes and MET 

intensities.,” Med. Sci. Sports Exerc., vol. 32, no. 9 Suppl, pp. 

S498-504, Sep. 2000. 

[26] Food and Agriculture Organisation (FAO) of the United Nations, 

“Human energy requirements: Report of a Joint FAO/WHO/UNU 

Expert Consultation,” in Food and Nutrition Technical Report 

Series 1, vol. 0, 2001, p. 38. 

[27] D. M. Nathan, J. Kuenen, R. Borg, H. Zheng, D. Schoenfeld, and 

R. J. Heine, “Translating the A1C assay into estimated average 

glucose values.,” Diabetes Care, vol. 31, no. 8, pp. 1473-8, Aug. 

2008. 

[28] D. Muffin, T. Jeor, A. Daugherty, A. Hill, and J. Scott, “A new 

predictive equation for resting energy expenditure in healthy 

individuals,” Am. J. Clin. Nutr., vol. 51, no. 2, pp. 241-247, 1990. 

[29] Mayo Clinic, “Exercise intensity: Why it matters, how it’s 

measured,” 2011. [Online]. Available: 

http://edition.cnn.com/HEALTH/library/exercise-

intensity/SM00113.html. [Accessed: 13-Jan-2014]. 

[30] L. O. Hall and A. Kandel, “The evolution from expert systems to 

fuzzy expert systems,” in Fuzzy Expert Systems, A. Kandel, Ed. 

CRC Press, 1991. 

[31] J.-S. R. Jang, “ANFIS: adaptive-network-based fuzzy inference 

system,” IEEE Trans. Syst. Man. Cybern., vol. 23, no. 3, pp. 665-

685, 1993. 

[32] S. R. Ghatage, T. D. Dongale, T. G. Kulkarni, and R. R. 

Mudholkar, “Development of Fuzzy Inference Scheme for LC 

Oscillator Design,” Int. J. Eng. Res. Dev., vol. 3, no. 12, pp. 91-98, 

2012. 

[33] J. Jassbi, S. H. Alavi, P. J. a. Serra, and R. a. Ribeiro, 

“Transformation of a Mamdani FIS to First Order Sugeno FIS,” 

2007 IEEE Int. Fuzzy Syst. Conf., pp. 1-6, Jun. 2007. 

[34] Scientific Advisory Committee on Nutrition (SACN), Dietary 

Reference Values for Energy. 2011. 

[35] NHS Information Centre for Health and Social Care, “Health 

Survey for England 2012,” 2012. 

[36] American Diabetes Association, “Nutrition Principles and 

Recommendations in Diabetes,” Diabetes Care, vol. 27, no. 1, 

2004. 

[37] D. Frankenfield, L. Roth-Yousey, and C. Compher, “Comparison 

of predictive equations for resting metabolic rate in healthy 

nonobese and obese adults: a systematic review.,” J. Am. Diet. 

Assoc., vol. 105, no. 5, pp. 775-89, May 2005. 

[38] N. Nnamoko, F. Arshad, D. England, and J. Vora, “Fuzzy Expert 

System for Type 2 Diabetes Mellitus (T2DM) Management using 

Dual Inference Mechanism,” in AAAI Spring Symposium Series 

2013 on Data-driven wellness: From Self tracking to Behaviour 

modification, 2013. 

[39] Abbott UK, “Abbott Diabetes Care.” [Online]. Available: 

http://www.abbottdiabetescare.co.uk/. [Accessed: 13-Jun-2014]. 

[40] P. R. Bevington and K. D. Robinson, Data Reduction and Error 

Analysis for Physical Sciences, 3rd ed. New York, New York, 

USA: McGraw-Hill Higher Education, 2003, pp. 98-163. 

[41] D. Kanter, “Becoming Databetic: Using data to improve my 

diabetes control,” 2013. [Online]. Available: http://databetic.com/. 

[Accessed: 26-Feb-2013]. 

 


