
Journal of Computer Sciences and Applications, 2015, Vol. 3, No. 6, 123-126
Available online at http://pubs.sciepub.com/jcsa/3/6/2
© Science and Education Publishing
DOI:10.12691/jcsa-3-6-2

Graph Theory in an Object Oriented Approach

Dixit Prasanna Kumar1,*, Sahoo Archana2, Badajena Tushar Kumar3

1Director, Interface Software, Bhubaneswar
2Completed MCA from OUAT, Bhubaneswar
3Completed B.Tech from ITER, Bhubaneswar
*Corresponding author: pk_dixit@yahoo.com

Abstract Many real world situations can be describe by means of a diagram consisting of set of points connected
by lines. Graph theory has many applications in different field. This paper show how various elements involved in
graph theory including graph representations using computer system such as object oriented concept.

Keywords: Graph, vertex, edge, weighted graph, breadth first search

Cite This Article: Dixit Prasanna Kumar, Sahoo Archana, and Badajena Tushar Kumar, “Graph Theory in an
Object Oriented Approach.” Journal of Computer Sciences and Applications, vol. 3, no. 6 (2015): 123-126. doi:
10.12691/jcsa-3-6-2.

1. Introduction
Graphs can be used to template many situations or

problems in the real world, for example: the problem to
find the path for a single walk can be modeled using a
graph, where vertices represent cities and edges represent
the roads, as shown in Figure 1.

Figure 1. A graph can be used to find the path between the districts

Other examples are:
• the cities in a country and the streets that connect

them;
• telecommunication networks, like the Internet and

the World Wide Web;
• mathematical relationships like Fibonacci expansions

using trees;
• decisions trees and Bayesian networks;
• project management, to manage dependencies

between tasks;
• bioinformatics: protein-protein interaction, residue

interaction network, gene regulation;
• electronic circuits: Kirchhoff laws are deeply related

with the graph structure of circuits;

2. Review of Literature

2.1. A.K.Rath and A.K.Jagadev’s Procedure
According to the author the graphs are helps for solving

a complex problem. There are many examples like find
out the shortest path in a city from one area to another.
BFS and DFS are two algorithms which are use for
finding a path, without repeat the edge [1].

2.2. Y. Daniel Liang’s Procedure
According to the author the graph theoretical ideas can

develop in 1736, when Leonard Euler published his paper
based on the problem of Seven Bridges of Konigsberg [2].
This problem asks whether there is a continuous path that
crosses each bridge only once. In graph, different
terminologies are present and also their representation.

2.3. Bondy and Murty’s Procedure
According to the author the graph theory has found

many applications in engineering and science.So many
books have been published such as by Bondy and Murty.
In real world situations can be described, diagram
consisting of a set of points together with lines joining
certain pairs of these points [3]. Bondy and Murty are both
stressed the importance of efficient methods of solving
problem. Several good algorithms are include and their
efficiencies are analyzed.

2.4. Tero Harju’s Procedure
According to the author the graph theory can found in

1736 when Euler solve the Konigsberg bridge problem.
Does there exist a walk crossing each of the seven bridges
exactly once? There are no standard notations for graph
theoretical objects. This is natural, because the names one
uses for the objects reflect the applications.

 Journal of Computer Sciences and Applications 124

2.5. Keijo Ruohonen’s Procedure
According to the author the graph is formed by vertices

and edges connecting the vertices. Each vertex is indicated
by a point and each edge by a line joining the points.
There are various types of graphs present with own
definitions such as simple graph, direct or indirect graph,
weighted or unweighted graph and so on [5].

3. Graph Theory
Graph theory is useful in a graph problem, where a

vertex can represent regions and the edges represent
movement paths, or movement between the regions. In
1736 Leonard Euler was founded graph theory, when he
solve the famous Seven Bridges of Konigsberg problem:
Does there exist a walk crossing each of the seven bridges
of Konigsberg exactly once? The Pregel river surrounding
two central islands, as shown in Figure 2(a).

I1 and I2 are two islands, and P1 and P2 are the cities.
Euler’s proof that no such path exists.

Proof: Euler First abstracted the city map into the
sketch shown in Figure 2(a). Second, he replace city and
islands with a dot, called vertex or a node, and each bridge
with a line, called an edge, as shown in Figure 2(b). This
structure with vertices and edges called graph.

Figure 2. Seven bridges connected islands and city
http://upload.wikimedia.org/wikipedia/com
mons/5/5d/Konigsberg_bridges.png

Let start a walk form any vertex, traversing all edges
exactly once and return to the starting vertex. Euler proved
that for such path to exist, each vertex must have an even
number of edges. Therefore, this problem has no solution.

3.1. What is graph?
A graph is a mathematical structure that represents

relationships among entities or objects in the real world, or
graphs are represented graphically by drawing a dot or
circle for vertex and drawing an arc or line between two
vertices for edge. For example, the graph is fig 1
represents the roads and their distances among cities.

A graph is consists of a nonempty set of vertices, nodes
and a set of edges that connect the vertices. For
convenience, we define a graph as G = (V, E). where V
represents a set of vertices E represents a set of edges For
example, V and E for the graph in Figure 1 are:

V = {“Balangir”, “Sonapur”, “Bauda”, “Phulabani”,
“Baragarh”, “Sambalpur”, “Jharasuguda”, “Sundargarh”,
“Deogarh”, “Anugul”};

E = {{“Balangir”, “Sonapur”}, {“Sonapur”, “Bauda”},
{“Bauda”, “Phulabani”}, {“Balangir”, “Baragarh”},
{ “Baragarh”, “Sambalpur”}, {“Sambalpur”,

“Jharasuguda”}, {“Sambalpur”, “Deogarh”},
{“Deogarh”, “Anugul”}, …};

3.1.1. Classification of graph
A graph is basically two types:
directed graph and undirected.
In a directed graph, each edge has a direction, which

indicates that you can move from one vertex to the other
through the edge. It is unidirectional in nature as shown in
Figure 3(a).

In an undirected graph, you can move in both
directions between vertices that is bidirectional in nature
as shown in Figure 3(b).

Figure 3. Graphs in many forms

Edges may be weighted or unweighted. For example,
each edge in the graph in Figure 3(c) has a weight that
represents the distance between two nodes.

125 Journal of Computer Sciences and Applications

A complete graph is the one in which every two pairs
of vertices are connected as shown in Figure 3(d).

A loop is an edge that links a vertex to itself. If two
vertices are connected by two or more edges, these edges
are called parallel edges as shown in Figure 3(e).

A simple graph is one that has no loops and parallel
edges as shown in Figure 3(f).

3.1.2. Representing Vertices
The vertices can be store in an array. For example, you

can store all the district names in the graph in fig 1 using
array like:

String[] vertices = {“Balangir”, “Sonapur”, “Bauda”,
“Phulabani”, “Baragarh”, “Sambalpur”, “Jharasuguda”,
“Sundargarh”, “Deogarh”, “Anugul”};
District dist0 = new District(“Balangir”, 55020);
…
…
District dist9 = new District(“Anugul”, 30540);
Object[] vertices = {dist0, dist1, …, dist9};

The vertices can be objects of any type. For example,
you may consider districts as objects that contain the
information such as name, population, MLA, etc. Then all
the objects are store in an array of object.

POJO CLASS
public class District1 { private String distName; private int
population;public District1(String distName, int population)

{

this.distName = distName;

this.population = population;

}

public String getDistName() {

return distName;

}

public int getPopulation() {

return population;

}

public void setDistName(String distName) {

this.distName = distName;

}
public void setPopulation (String population) {

this. population = population;

}}

Object Graph Controller

All the vertex(district) are map to the District class. In
Distance class, name and population are the variable of
object in District class. So after mapping all the district
name(anugul, sonapur, etc) becomes object of District
class and object store in Bean factory. The variable of
Edge class is vertex that means District class objects are
variable of Edge class. The POJO class contains all the
getter, setter method. In BFS class, we found the searching
order of vertices.

This image shows these are two vertex or object in
District class, and connecting both form a edge or edge
object in Edge class.

3.1.3. Representing Edges

Edge array:
The edge can be represented using a two-dimensional

array. For example, to represent the edges in the graph in
Figure 1.

int[][] edges = { {0, 1}, {0,
4},
{1, 0}, {1, 2}, {1, 5}, {2, 1},
{2, 3}, {3, 2}, {4, 0}, {4, 5},
{5, 1}, {5, 4}, {5, 6}, {5, 8}, {6, 5},
{6, 7}, {6, 8}, {7, 6}, {8, 5}, {8, 6},
{8, 9}, {9, 8}

};

List of edge objects:

 Journal of Computer Sciences and Applications 126

To represent the edges is to define edges as objects and
store the edges in a java.util.ArrayList. For example, to
represent the edges in the graph in Figure 1.

public class Edge { int u;
 int v;
public Edge(int u, int v)

{
this.u = u; this.v = v;
}
}
java.util.ArrayList<Edge> list = new
java.util.ArrayList<Edge>();
list.add(new Edge(0, 1));

list.add(new Edge(0, 2));

…

…

4. Conclusion
In this paper, the view point of vertex and edge

connectivity is introduced. Graph theory is a deep area for
programmers. It can be used to solve complex problems.
Graph theory is difficult to understand and also for
implement. If we implement it by using object oriented
approach then it will be easy to implement.

References
[1] A.K. Rath, A.K. Jagadev, “Data Structures using C”, 2007.
[2] Y. Daniel Liang, “Introduction to Java Programming”, 2010.
[3] Tero Harju, “GRAPH THEORY”,

University of Turku, Finland, 1994-2011.
[4] J. A. Bondy, U. S. Murty, “Graph Theory with Application”,

University of Waterloo, Canada, 1976.
[5] Keijo Ruohonen, “Graph Theory”, 2013.

