
Journal of Computer Sciences and Applications, 2016, Vol. 4, No. 1, 9-13 
Available online at http://pubs.sciepub.com/jcsa/4/1/2 
© Science and Education Publishing 
DOI:10.12691/jcsa-4-1-2 

 

Modeling for Fault Tolerance in Cloud Computing 
Environment  

Taskeen Zaidi, Rampratap* 

Faculty of Computer Science & Engineering, Shri Ramswaroop Memorial University, Deva Road, Lucknow, India 
*Corresponding author: taskeenzaidi867@gmail.com 

Abstract  Due to emergence of cloud computing, many traditional issues have been eliminated or reduced. Cloud 
computing is on demand computing in which processing is done on remote computer hence the chances of errors is 
more due to communication delay, latency or loss of control over computing node. These are the important issue 
that’s why cloud computing infrastructure should be fault tolerant as well as designed to schedule tasks must be 
properly handled. The present paper deals with the understanding of fault tolerance techniques in cloud 
environments and comparison with various models on various parameters have been done. Fault tolerance technique 
is studied with the help of well known object-oriented language Unified Modeling Language and state diagrams are 
designed and validated through the concepts of Finite State Machine. 

Keywords: UML, cloud computing, fault tolerance, UML, FSM, test cases, round robin 

Cite This Article: Taskeen Zaidi, and Rampratap, “Modeling for Fault Tolerance in Cloud Computing 
Environment.” Journal of Computer Sciences and Applications, vol. 4, no. 1 (2016): 9-13. doi: 10.12691/jcsa-4-1-2. 

1. Introduction 
Cloud computing is used for manipulating, configuring, 

and accessing the hardware and software resources from 
remote location. It tenders online data storage, 
infrastructure, and application. Cloud computing imparts 
by which we can access the applications as utilities over 
the internet. It is used to create, configure, and customize 
the business applications online. Fault tolerance is a major 
issue to guarantee the availability and reliability of critical 
services as well as application processing and execution. 
In order to depreciate failure impact on the system and 
application execution, failures should be anticipated and 
proactively handled. Fault tolerance techniques are aiming 
to predict these failures and take an appropriate action 
before failures actually occur. The present paper 
overviews the existing fault tolerance techniques in cloud 
computing based on their policies, tools used and research 
challenges.  

Malik and Fabrice [1] have proposed the fault tolerance 
model for real time cloud computing and analyzed on the 
basis of reliability of processing nodes. The systems 
tolerate the faults and it is predicted that the reliability of 
virtual machines changes frequently and it may be of 
adaptive nature. Pullum [2] has described the concepts of 
software fault tolerance techniques, fault removal, fault 
forecasting, checkpoints, and data diverse software fault 
tolerant techniques. The fault tolerance techniques with 
more emphasis on reliability factor are well studied in [3]. 
An innovative method for creating and managing fault 
tolerance is proposed by Jhawar et al. [4]. A generic fault 
tolerance mechanism is for independent module which 
validates the users’ requirements. Various factors like 
performance, fault tolerance, scalability of virtual management 

system with three structure centralized, hierarchical and 
peer to peer are well studied by Kong et al. [5]. Guerraoui 
and Yabandeh [6] have predicted that resource graph and 
database are necessary for service provider to ensure the 
behavior of fault tolerance mechanism. A approach is 
developed by Jhawar et al. [7] in which fault tolerance 
mechanism is evaluated that uses virtualization to 
transparently increase the reliability and availability of 
cloud infrastructure. Role of virtualization in cloud 
computing is well explained in Malhotra et al. [8]. Key 
reasons for virtualization and various standards of 
networking technologies and concepts of software defined 
networking are described in [9]. Lombardi and Pietro [10] 
have explained that security requirements are based on 
configuration management and vulnerability assessment. 
In the present work, Unified Modeling Language (UML) 
is also used to create a model. Let us describe some of the 
important review on UML which is a general purpose 
modeling language that is used to model various kinds of 
the research problem. It is widely accepted by the software 
professionals and developed by Object Management 
Group (OMG) [11,12]. Modeling with real time 
characterization in UML, approach and structure, 
viewpoint, UML viewpoint, concurrency modeling, 
performance modeling, real time CORBA applications are 
well explained in [13]. UML diagrams in mathematical 
analyzable format and transformed into queuing network 
based on intermediate textual representation has been 
represented in [14]. Pllana and Fahringer [15,16] have also 
used the UML modeling language for the performance 
oriented distributed and parallel architecture applications. 

In the present work, we have suggested different fault 
tolerance techniques and proposed a fault tolerance 
technique using round robin scheduling scheme in which 
failures are minimized on system through checkpoints 



10 Journal of Computer Sciences and Applications  

 

when a fault occurs on system. Object oriented language 
UML is used to design a model in terms of state transition 
diagram for the systems processing and updating of local 
and global checkpoints and model is validated by the 
various test cases.  

2. Background 

2.1. Fault Tolerance Techniques 
There are two different types of fault tolerance 

techniques which are described below in brief: 

2.1.1. Reactive Fault Tolerance 
It is used to reduce effect of failures on system when 

actually failure occurs. It consists of the followings: 
1. Checkpointing 

If the task failed then it is restarted from recent 
checkpoint in spite of beginning. It is efficient when 
implemented for large application. 
2. Replications  

It is used to maintain execution speed for different 
replicas of task run on different resources until the 
replicated task not crashed. Various techniques like 
Haddop, HAP proxy and Amazon EC2 are used to 
implement replicas. 
3. Job Migration  

It is used when failure occurs then job is migrated to a 
new machine. 
4. Retry 

It is simplest technique in which user resubmits task to 
same cloud resource. 
5. Exception Handling 

In this method user defines the specific action of task 
failures for workflows. 
6. Task Resubmission 

Failed task is submitted either on same machine or on 
another machine when it was operated. 

2.1.2. Proactive Fault Tolerance 
This technique predicts fault proactively and replaces 

the suspended source of faults by other working 
components and then avoids recovery from faults or errors. 
It consists of the followings: 
1. Self-Healing  

If the instance of an application running or multiple 
virtual machines fails then it is controlled automatically. 
2. Software Rejuvenation 

System starts with new state every time and also 
planned for periodic reboots. 
3. Preemptive Migration  

The application is constantly observed and analyzed 
and it depends upon feedback loop control mechanism. 

2.1.3. Hardware Fault Tolerance 
Fault tolerant techniques are divided towards building 

computer that automatically recover from random faults 
occurring in hardware components. By partitioning of 
computer system into pieces, the protective redundancy is 
used. Major approaches to recover hardware failures are 
described below: 
1. Fault Masking 

It is structural redundancy technique that completely 
masks fault in redundant modules. Triple Modular 
Redundancy (TMR) is used for fault masking in which 
circuitry triplicated and voted. The individual voter 
failures are corrected by voting process. 
2. Dynamic Recovery 

Dynamic recovery is useful when only one copy of 
computation is running at a time and it involves automated 
self-repair. In this approach, spiral mechanism is required 
to detect failures in modules, switch out a faulty module, 
instigate actions to restore and continue completion. Using 
this approach, computational delays the fault recovery, 
fault coverage is lowered. 

2.1.4. Software Fault Tolerance 
Software that tolerates the software designs faults use 

the static and dynamic redundancy approach. The 
approaches like N-version programming and design 
diversity are used to implement fault tolerant system. 

 
 

2.2. Round Robin Scheduling 
Round robin scheduling is a preemptive scheduling 

algorithm used in time-sharing or multitasking or 
timesharing systems that give each process a unit of time 
slice or quantum for execution on central processing unit 
and then next process moves to ready queue, it continues 
until all processes completed. This scheduling requires use 
of timer interrupts and typically take time quantum 
between 10 to 100 milliseconds. Context switching is used 
to save states of process. The advantage of this scheduling 
is that it provides equal share of central processing unit to 
every process and it is easy to implement if number of 
process on run queue are known and worst-case response 
time for a process can be computed. 

3. Proposed Algorithm 
On the basis of above concepts, the following 

algorithms are proposed for global and local check points: 
Global Checkpoint 

Let us define global check point in which simulator 
assigns threads to the requested processes and allocates 
sub clouds in round robin manner and global checkpoint 
will be updated. It also tells the information about time of 
entry of job, number of processors required, serial time, 
thread time, etc. The algorithm is given below:  

1. Virtual Machine (VM’s) submits their request to cloud 
service provider; 
2. Cloud Service Provider(CSP) assigns threads to 
request and allocates minimum loaded sub clouds in 
round robin way; 
3. After allocation of subclouds global checkpoint will be 
updated periodically; 
4. By reading checkpoint cloud service provider will check 
whether any subclouds has failed or no failure occurs. If 
no failures occur then global checkpoint will be updated 
but if failure occurs then job will be migrated to 
secondary node in round robin manner and then global 
checkpoint will be updated. 

The above steps are represented by the use of UML in 
the form of state transition model: 



 Journal of Computer Sciences and Applications 11 

 

 

Figure 1. UML State Transition Diagram for Global Checkpoint 

Local checkpoint  
It tells information about server status, job status, server 

name and remaining time of threads. The proposed 
algorithm is given below: 
1. Threads arrive on subclouds; 
2. Subclouds check whether node is active or inactive. If 
inactive then a message is generated that subcloud is not 
responding; 
3. If active then subcloud allocates minimum loaded nodes 
to the thread in round robin way to balance the load; 

4. Global checkpoint will run periodically and a new save 
point will be created every time; 
5. By reading checkpoint cloud service provider checks 
whether any node is failed or recover from failure; 
6. If any node is crashed or failed then subcloud load will 
be shifted to another node in round robin manner in such 
a way that the load will be balanced and local checkpoint 
will be updated. 

The above steps are represented by the use of UML in 
the form of state transition model: 

 

Figure 2. UML State Transition Diagram for Local Checkpoint 

4. Validation of Models Through Test 
Cases 

Authors have designed two UML models one for global 
check point and another for local check point which are 
validated by the concept of the finite state machine. Table 1 
shows the list of events occurred for transition from one 
state to another state. Total events taken from Figure 1, 
Figure 2 are a,a ′’b,b’c, c',d, and e as mentioned in table.  

By taking above events, equivalent state transition 
diagram is represented in Figure 3, Figure 4. 

Table 1. List of Events for Transition Table in LC 
a subclouds active and allocated 
a’ Subclouds inactive 
b Update GC 
b' Node Failure occurs  
c To update GC after recovery 
d' To update LC after recovery 
d LC updated 
e Transfer of data to user 

The total states are q0, q1, q2, q3, and q4 with number of 
events as represented in above table. Transition functions 

and equivalent grammar are generated from Figure 3, 
Figure 4, which are given below: 

 

Figure 3. FSM for Global Checkpoint 

 

Figure 4. FSM for Local Checkpoint 



12 Journal of Computer Sciences and Applications  

 

Equivalent Grammar for Global Checkpoint 
δ(q0,a) = q1 ⇒ q0aq1 
δ(q1,b)=q2 ⇒ q1bq2 
δ(q1,b’)=q3 ⇒ q1b’q3 
δ(q3,c)= q4 ⇒ q3cq4 
δ(q2,d) = q4 ⇒ q2dq4 
δ(q4,e) = q0 ⇒ q4eq0 

Table 2. List of Events for Transition Table in GC 
a Job submitted 

b Allocation of subclouds 

b’ Subclouds not allocated 

c GC updated after migration 

d Update GC 

e Transfer data to clients 

Equivalent Grammar for Local Checkpoint 
δ(q0,a) = q1 ⇒ q0aq1 

δ(q1,a’) = q2 ⇒ q1a’q2 

δ(q1,b’)= q4 ⇒ q1b’q4 

δ(q1,b) = q3 ⇒ q1bq3 

δ(q4,c) = q3 ⇒ q4cq3 

δ(q3,d) = q5 ⇒ q3dq5 
δ(q4,d’)= q5 ⇒ q4d’q5 

 δ(q5,e) = q0 ⇒ q5eq0 

2.3.1. Test case for Local Checkpoint Updating: 
(i) Sub clouds allocation 

q0aq1 
q0a’q2 
By replacing non terminals on RHS of production we 

can get, 
q0aa’q2 

(ii) Global checkpoint updating 
q0aq1 
q1bq3 
q1b’q4 
By replacing non-terminals on RHS of production we 

can get, 
q0abb’q4 

(iii) Local checkpoint updating 
q0aq1 
q1bq3 
q4cq3 
q3dq5 
q4 d’q5 
By replacing non-terminals on RHS of production we 

can get, 
q0abcdd’q5 

(iv) GC updating after recovery 
q0aq1 
q1bq3 
q4cq3 
q3dq5 
q4 d’q5 
By replacing non-terminals on RHS of production we 

can get, 
q0abcdd’q5 

(v) GC updating after recovery 

q0aq1 
q1bq3 
q1b’q4 
q4cq3 
By replacing non-terminals on RHS of production we 

can get, 
q0abb’cq3 

2.3.2. Test case for Global Checkpoint Updating 
(i) Global checkpoint updating 

q0aq1 
q1bq2 
q1b’q3 
q3cq4 
q2dq4 
By replacing non-terminals on RHS of production we 

can get, 
q0abb’cdq4 

(ii) GC updating after recovery 
q0aq1 
q1bq2 
q1b’q3 
q3cq4 
By replacing non-terminals on RHS of production we 

can get, 
q0abb’cq4 

5. Conclusion 
Due to the dynamic nature of cloud environment system 

behavior will become unexpected and results in faults or 
failures. Fault detection in clouds computing environment 
is one of the biggest challenge now days.  

The propose work emphasized towards the study of 
various fault tolerance techniques and then detection of 
faults and it prevention by issuing checkpoints in round 
robin manner, test cases are also designed for validation of 
proposed model. The faults will be handled using round 
robin technique with the updating of local and global 
checkpoint. 

Acknowledgement 
In all humility and with much fervor, the authors are 

very thankful to Computer Science and Engineering 
department, Shri Ramswaroop Memorial University, 
Lucknow to carry out the above research work. 

References 
[1] Malik, Sheheryar and Fabrice Huet. “Adaptive fault tolerance in 

real time cloud computing services, 2011 IEEE world congress on. 
IEEE 2011. 

[2] L.L. Pullum. “Software fault tolerance and implementation Artech 
House, Boston, London,UK 2001. 

[3] S.Lakshmi Sudha. “Fault tolerance in cloud computing” IJESR 
International Journal of Engineering Sciences Research, Vol 04, 
2013. 

[4] Jhawar, Ravi, Vincenzo Piuri & Marco Santambrogio, “Fault 
tolerance management in cloud computing”. A system level 
perspective” Systems Journal. IEEE 7.2(2013): 288-297. 



 Journal of Computer Sciences and Applications 13 

 

[5] X. Kong, J. Huang, C. Lin, P.D. Ungsunan, “Performance, fault 
tolerance and scalability analysis of virtual infrastructure 
management system”, 2009 IEEE international symposium on 
parallel and distributed processing with applications, Chengdu, 
China, Aug 9-12, 2009. 

[6] R. Guerraoui and M. Yabandeh, “Independent faults in the cloud” 
in Proc. 4th international workshop Large scale distributed system, 
Middleware, no 6.2010, pp12-17. 

[7] Jhawar, Ravi, Vincenzo Piuri and Marco Santambrogio “Fault 
Tolerance Management In IAAS cloud”. IEEE 2012. 

[8] L.Malhotra, D. Agarwal & A.Jaiswal, Virtualization in cloud 
computing, JITSE, Volume 4, Issue 2,ISSN: 2165-7866. 

[9] R.Jain & S. Paul (2013) Network virtualization and software 
defined networking for cloud computing: A survey IEEE 24-31. 

[10] F.Lombardi, R.Di Pietro, Secure virtualization for cloud 
computing, Journal of network and computer applications, 
Elsevier 2010. 

[11] OMG, 2001, Unified Modeling Language Specification. Available 
online via http://www.omg.org. 

[12] OMG, 2002, OMG XML Metadata Interchange (XMI) 
Specification. Available online via http://www.omg.org. 

[13] Object Management Group.UML Profile for Schedulability, 
Performance & Time Specification. OMG Adopted Specification 
pt/02-03-02, Object Management Group, March 2002. 

[14] P.Kahkipuro. UML Based Performance Modeling Framework for 
Computer-Based Distributed Systems. In: R. Dumko (Ed.), 
Proceedings of 2nd International Conference on Unified Modeling 
Language (UML′99), pp.167-184. Springer (LNCS vol.2047), 
1999. 

[15] S. Pllana, T. Fahringer, 2002, On Customizing the UML for 
Modeling Performance Oriented Applications. In <<UML>>, 
Model Engineering Concepts and Tools, springer Verlag., Dresden, 
Germany.  

[16] S. Pllana, T. Fahringer, 2002, UML Based Modeling of 
Performance Oriented Parallel and Distributed Applications, 
Winter Simulation Conference. 

 


