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Abstract  Automatic tracking and evaluation of moving-object trajectories is critical in many applications such as 
performance estimation of mobile robot navigation. Mobile robot is an effective platform for stimulating student 
motivation at K-12 institutions as well as a good tool for rigorous engineering practices in colleges, universities, and 
graduate schools. Developing new mobile robot platforms and algorithms requires objective estimation of navigation 
performance in a quantitative manner. Conventional methods to estimate mobile robot navigation typically rely on 
manual usage of chronometer to measure the time spent for the completion of a given task or counting the success 
rate on the task. This paper proposes an alternative; a multi-camera vision system that can automatically track the 
movement of mobile robot and estimate it in terms of physics-based profiles: position, velocity, and acceleration of 
the robot in the trajectory with respect to a user-defined world-coordinate system. The proposed vision system runs 
two synchronized cameras to simultaneously capture and track the movement of the robot at 30 frames per second. 
The system runs a homography-based projection algorithm that converts the view-dependent appearance of the robot 
in the camera images to a view-independent orthographic projection mapped on the registered world coordinate 
system. This enables the human evaluator to view and estimate the robot navigation from a virtual top-down view 
embedded with the physics-based profiles regardless of the actual cameras’ viewing positions. The proposed system 
can also be used for other domains including highway traffic monitoring and intelligent video surveillance. 
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1. Introduction 

Mobile robot development and competition has become 
very popular in STEM (Science, Technology, Engineering 
and Mathematics, [1]) education. Mobile robot is an 
effective platform for stimulating student motivation at  
K-12 institutions as well as a good tool for rigorous 
engineering practices in colleges, universities, and 
graduate schools. In robot design and development at all 
levels of institution, it is import to objectively measure 
and estimate the mobile robot’s navigation performance. 
However, the usual practice in the performance evaluation 
of mobile robot navigation is typically based on human 
evaluator’s manual intervention using a chronometer to 
measure the time of completion in a given task or 
accuracy counting of pass / fail on the task. The manual 
intervention is error-prone and can be biased as well. We 
need a tool that reliably and objectively evaluates the 
performance in an automated manner. It is also desirable 
to develop an unobtrusive method that does not require  
the attachment of any sensors, transponders, or beacons  
to the mobile robot since such attachment will change  
the weight of the robot not alone the complicacy of  
the installation and management of such attachment.  
A computer vision-based object detection and tracking 

approach is a promising solution in this regard. Review of 
general research on vision-based object detection and 
tracking can be found in [2,3,4]. 

This paper presents a vision-based evaluation testbed 
for mobile robot navigation by using multiple cameras. 
The proposed system automatically records the movement 
of the robots and objectively estimates their navigation 
performance. Unlike the methods for robot’s self-localization 
using heterogeneous sensors and robot models [5,6],  
the proposed system provides a purely vision-based 
testbed that evaluates the navigation performance in terms 
of the physics-based profiles: position, velocity, and 
acceleration of robot over time with respect to a given 
world-coordinate system. 

2. Methodology 

Our methodology is based on multiple-view geometry 
[7] in computational vision. The method starts by 
modeling the process of image formation when a scene is 
viewed through a camera. A pinhole camera model is 
adopted as shown in Figure 1. Pinhole camera model [8] 
assumes that exactly one ray from each point in the scene 
passes through the pinhole lens and hits the image plane 
opposite to the scene, forming the inverted image. For 
convenience we use the virtual image in front of the 
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pinhole, forming the new image plane as shown in Figure 
2. The mathematical description of the imaging process in 
Figure 2 denotes the world scene coordinates with 
uppercase roman letters {X, Y, Z} and image coordinates 
with lowercase roman letters {x, y, z}. Note that the 
vectors pointing from camera center C to the world 
coordinate point and the corresponding image coordinate 
point are denoted by boldface symbols, such as X and x, 
respectively. The camera’s imaging process is to map the 
point X denoted by coordinate value (X,Y,Z) in the 3D 
space to the point x denoted by coordinate value (x,y) on 
the 2D image plane. This process is mathematically 
modeled in equation (1) as follows (,where the superscript 
t means column vector notation.) 

 (X, Y, Z)t Projection
�⎯⎯⎯⎯⎯⎯� (x, y)t  (1) 

 
Figure 1. Pinhole camera model. From Forsyth & Ponce, 2003 

 
Figure 2. Image projection in a projective camera 

 
Figure 3. Two views of points on a plane π ⊂ ℝ3. From Ma et al., 2001 

As shown in Figure 3, if we use two cameras, each  
of the camera forms image plane I1 and I2 with the 
corresponding camera origins O1 and O2, respectively [9]. 
The second camera’s relative configuration with respect to 
the first camera can be defined in terms of the relative 
rotation R and translation T. Note that the same point p  
in the world scene π appears very different in the two 
image planes as vectors x1 and x2, respectively, due to 
perspective distortion effect. Overall, the camera imaging 
process is mathematically modeled as the mapping of a 

viewed object from the 3D-world scene coordinate (X,Y,Z) 
to the 2D image plane coordinate (x,y). This kind of 
mapping from higher dimension to lower dimension 
results in inevitable loss of information during the 
downgrading transformation from the higher to lower 
dimension. For example, depth information of a scene is 
lost in 2D photo. 

Our ultimate goal in computational vision is to recover 
the lost information of the viewed object by the inverse 
mapping from the 2D image coordinate (x,y) ∈ ℝ2 on the 
image planes I1 and I2 to the world scene coordinate 
(X,Y,Z) ∈ ℝ3 in the world scene π. This inverse mapping 
will enable the accurate estimation of the world scene 
given only the 2D image data. For this purpose, we need 
at least two camera views in order to resolve the 
ambiguity caused by the information loss during the initial 
downgrade transformation. To resolve the ambiguity, we 
first conduct the camera calibration that establishes the 
camera configuration (R,T) of Figure 3, as expressed in 
equation (2). 

 𝒙𝒙𝟐𝟐 = 𝑅𝑅𝒙𝒙𝟏𝟏 + 𝑇𝑇. (2) 
A perspective projection for planar homography [7]  

is used to do the inverse mapping from image- to  
world-coordinate system. A homography matrix H maps 
corresponding points between image coordinate systems. 
If we denote 𝐻𝐻𝑚𝑚𝑛𝑛  as the homography from arbitrary view m 
to n, we can register multiple arbitrary camera views  
by the series of concatenated homographies as shown in 
equation (3). 

 𝐻𝐻𝑚𝑚𝑛𝑛 = 𝐻𝐻𝑛𝑛+1
𝑛𝑛  𝐻𝐻𝑛𝑛+2

𝑛𝑛+1   ⋯  𝐻𝐻𝑚𝑚−1
𝑚𝑚−2  𝐻𝐻𝑚𝑚𝑚𝑚−1. (3) 

The 4-point algorithm [10] is used to compute the 
homography matrix H. The four points are selected from 
certain image corners or user-specified markers on the 
ground plane Q. 

Using the homography matrix H, we can write the 
transformation of points in 3D from camera i to camera j 
as in equation (4): 

 𝑋𝑋𝑗𝑗 = 𝐻𝐻𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 ∈ ℝ3. (4) 
The j-th camera can even be a virtual camera viewing 

the scene from top down. A point in view-1, x1, and a 
point in view-2, x2, of the same 3D point q are mapped to 
𝑥𝑥1
𝑣𝑣  and 𝑥𝑥2

𝑣𝑣  on the common virtual view of the ground 
plane by individual planar homography matrices 𝐻𝐻1

𝑣𝑣  and 
𝐻𝐻2
𝑣𝑣 , respectively in equations (5) and (6), as follows: 

 𝑥𝑥1
𝑣𝑣 = 𝐻𝐻1

𝑣𝑣  𝑥𝑥1 (5) 
 𝑥𝑥2

𝑣𝑣 = 𝐻𝐻2
𝑣𝑣  𝑥𝑥2 (6) 

The two versions of the inverse mapping from the two 
cameras are joined to a common ground [7] and generates 
a virtual top-down plan view of the world scene π. 

By using the 4-point algorithm [9], the homography 
matrix H can correct the projective distortion of image 
planes I1 and I2 in Figure 3 and map on to the virtual top-
down plan view that represents the world scene plane π. 
This virtual top-down view of the world scene is camera-
independent and orthographic, and provides the objective 
measure of the actual scene dimensions without view-
dependent appearance. The orthographic virtual top-down 
plan view also enables the generation of the navigation 
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trajectory profile of moving objects in terms of position, 
velocity, and acceleration on the world scene coordinate 
system. 

3. Design and Implementation 

The overall system diagram is depicted in Figure 4. The 
system starts from the camera calibration after deploying 
the cameras to specific locations. The calibrated and 
synchronized cameras (camer-1 and camera-2) keep 
capturing the synchronized image frames. Computer 
vision algorithms conduct perspective projection and 
planar homography mapping as explained in the previous 
section. Color-based object tracking algorithm [11,12,13] 
follows the processing, and the navigation-trajectory 
profiling is achieved by analyzing the results of the object 
tracking. 

 
Figure 4. Overall System Diagram for the processes from imaging to 
trajectory profiling 

The system diagram is implemented into a prototype 
testbed composed of two cameras, a frame-grabber board, 
a desktop computer, and a flat table as shown in Figure 5. 
The current testbed uses two synchronized cameras, and 
they can be mounted in versatile manner: for top-down 
view or arbitrary oblique views depending on user’s need. 
In Figure 5, the left-view camera is installed on top of a 
tripod while the right-view camera was attached to a 
clamp fastened on a bookshelf cabinet. The flat table used 
as a prototype testbed. 

 
Figure 5. Testbed configuration using a flat table and two synchronized 
cameras. Left-view camera on the tripod, right-view camera on the clamp 

The left- and right-view images captured by the 
cameras are shown in Figure 6. The appearance of the 
same flat table looks very different on the left- and  

right-view images due to the perspective effects of the two 
cameras. We define the world seen coordinate system on 
the flat table in terms of the origin O and X- and Y-axis 
extended from the origin as shown in the right side image 
of Figure 6. Note that it is conventional to define the 
image domain’s Y-axis to extend toward row direction of 
the image (in Figure 6), while the mathematical definition 
of the Y-axis is opposite to it (in Figure 2.) 

 
Figure 6. Left- and right-view images of the testbed. World coordinate 
system is defined on the testbed (overlaid for visualization on the right-
view image.) 

 
Figure 7. Snapshot of camera calibration using a standard calibration 
pattern 

Camera calibration is achieved by using a standard 
checker board pattern shown in Figure 7. Multiple 
snapshots of the calibration board at different positions are 
used in the procedure. 

 
Figure 8. Snapshot of pilot study using a small mobile robot (indicated 
by arrow) on the testbed 

Figure 8 shows the left- and right-view snapshot of the 
experimental run of a micro-robot running on the flat table. 
The micro-robot is indicated by the arrows for readers’ 
convenience. Individual trajectory points of the robots are 
time-stamped, and the calculation of the position, velocity, 
and acceleration provides the full description of the robot 
movements. We tested two different micro-robots of 
different running speed for the implementation of the 
prototype testbed. 

The testbed has an intuitive user interface as in Figure 9 
with which students can run the system easily and 
visualize the trajectories intuitively. The control software 
for the video capture and the display on GUI frontend in 
Figure 9 was written in C++ language. The prototype 
system was set up in the author’s office space, but the 
system is scalable to deploy to larger environments such 
as a bigger lab floor for mini-robots or a spacious gym 
floor for bigger robots. Different deployment options do 
not require the software code modification; only the 
camera calibration needs update for the new camera 
positions. 
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Figure 9. Graphical-user-interface frontend that controls the system and visualizes results. The overlaid world coordinate system of O, X, Y complies to 
that of the testbed in Figure 6 

4. Experiments 

The prototype testbed was extended at a larger scale 
and applied to real-world experiments. The extended 
testbed used in the experiment is composed of two 
cameras, a desktop computer, and a flat floor area as 
shown in Figure 10. 

 
Figure 10. Testbed (left) using two synchronized cameras A, B and their 
views (right) 

The two synchronized cameras are marked ‘A’ and  
‘B’ for readers’ convenience. The upper-right view in  
Figure 10 is from camera-A, while the lower-right view in 
Figure 10 is from camera-B. The labels O, U, V, and  
D are add-on for readers’ convenience, and indicate the 
locations of the markers placed on the floor for the 4-point 
algorithm [12] to specify the user-defined world coordinate 
system. 

The appearance of the same scene looks very different 
on the camera-A vs. camera-B images due to the different 
perspectives. We define the world coordinate system on 
the flat area in terms of the origin O and U- / V-axis 
extended from the origin. Camera calibration is achieved 
by using a standard checker board pattern shown in Figure 
10. Multiple snapshots of the calibration board at different 
positions are used in the procedure. 

Figure 11 shows a remote control car used in the experiment, 
and the two camera views of the car on the testbed. We 
used a remote control car with a known maximum speed 
(i.e., 8-12 miles per hour or 3.5 – 4.3 meters per second) in 
the experiment. The right-most picture of Figure 11 shows 
the plannar-homography mapping of the two camera views 
to achieve a virtual top-down view on the user-defined 
world coordinate system. The world coordinate system is 
defined by the horizontal axis between two points O and U 
(denoted by the horizontal line) and the vertical axis 
between O and V (denoted by the vertical line) in Figure 11. 

The automatic tracking of remote-control car is achieved 
by color-histogram based object tracking algorithm 
[11,12,13]. The algorithm was chosen for its real-time 
processing speed and efficiency. This experiment assumes 
the remote-control car is distinct in color. The tracking 
algorithm generates a fitted ellipse overlaid on the tracked 
object (i.e., remote-control car) as shown in Figure 11 and 
Figure 12. The center of the ellipse comprises the 
individual trajectory point along the video frames. The 
individual trajectory points of the robot are time-stamped, 
and the calculation of the position, velocity, and 
acceleration provides the full description of the robot 
movements. It is straightforward to convert between image 
coordinate system (U,V) vs. mathematical coordinate system 
(X,Y) [9]. 
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Figure 11. Snapshot of experiment using a small remote-control car in lieu of mobile robot on the testbed 

 
Figure 12. Examples of tracking: linear navigation (top row) vs. circular navigation (bottom row) 

Figure 12 shows two instances of tracking: linear 
navigation (shown in the top row) and circular navigation 
(shown in the bottom row). Each homography-mapped 
frame contains the information of the frame number, the 
position, velocity, and acceleration of the tracked mobile 
car in the image coordinate units (i.e., pixels.) 

The testbed has an intuitive user interface (Figure 5 and 
Figure 11) with which students can run the system easily 
and visualize the trajectories intuitively. 

 
Figure 13. Example profile of a navigation trajectory 

Figure 13 shows an example profile of a cumulative 
navigation trajectory that involves 1830 frames (including 
those in Figure 12.) The tracking algorithm of the control 
software successfully tracks the moving robot and assigns 
the enclosing ellipse with track ID as shown in Figure 11 

and Figure 12. The center position (xi, yi) of the ellipse at 
the i-th frame is regarded as the position of the robot at the 
given time. The instantaneous velocity is defined as a 
vector  v�⃗ i  = �vx, vy�i

 in terms of the differential location 
in x- and y-axis between the current i-th frame and the 
previous (i-1)-th frame. The velocity components vx and 
vy are defined in equations (7) and (8): 

 i i 1
x

x x
v

t
−−

=
∆

 (7) 

 i i 1
y

x x
v .

t
−−

=
∆

 (8) 

The speed of velocity is defined by the amplitude of the 
vector in equation (9): 

 2 2
x yv v v .= +  (9) 

Figure 14 shows the speed profile for the navigation 
trajectory of the Figure 13. The horizontal axis is frame 
number, while the vertical axis is speed in [mm/sec]. It 
shows multiple sharp spike noises, which are due to 
imaging noise and tracking error. But human interpreter 
can easily rule out those noise points from the speed 
profile. The typical value of the measured speed on  
the smooth bumps/plateaus of the Figure 14 profile is 
approximately 2 [meters/sec], which is reasonable in the 
current experimental setting. 

 



22 Journal of Computer Sciences and Applications  

 
Figure 14. Speed profile for the navigation trajectory of Figure 13 

The instantaneous acceleration is defined in equation 
(10) as the vector difference between the current i-th 
frame and the previous (i-1)-th frame: 

 i i 1
i

v v
a .

t
−−

=
∆

 

  (10) 

The control software for the video capture, the object 
tracking, and the profile generation was written in  
C++ language. We tested the proposed system with a 
general-purpose desktop PC installed with Microsoft 
Windows 7 operating system and 3.4 GHz Intel Core i7 
CPU. The experimental testbed captures two synchronized 
camera images at 30 frames per second, and the  
color-based tracking algorithm runs almost in real-time; 
tracking speed may vary slightly depending on the 
imaging quality. The current system was setup in a small 
lab space, but the system is scalable to deploy to larger 
environments such as a bigger floor for moderate-size 
robots or a spacious gym floor for bigger robots. Different 
deployment options do not require the software code 
modification; only the camera calibration needs update for 
the new camera positions. 

The proposed system provides objective trajectory 
profiles of the robot navigation in terms of the position, 
velocity, and acceleration at every frame. Some inaccuracy is 
induced at some images; most of the disturbance in the 
accuracy is from imaging noise and tracking errors; it is an 
open research issue in computer vision to achieve a robust 
detection and perfect tracking. 

5. Conclusion and Future Work 

This paper presented a vision-based evaluation testbed 
for mobile robot navigation. The testbed can be used  
to estimate mobile robot navigation in quantitative manner 
and to provide students and developers with insights about 
objective performance evaluation based on the physics-based 
profile. The proposed system is a general-purpose system 
that can be deployed to estimate the navigation of various 
moving objects including, but not limited to, mobile robots. 
The developed system is versatile in that the cameras can 
be installed in various configurations such as top-down 
viewing direction or arbitrary oblique viewing directions 
as long as the two views are not in parallel. The system is 
non-obtrusive since it is purely vision-based and does  
not require the attachment of any sensors, transponders,  
or beacons to the tested object. The future research  

plan includes the improvement of imaging and tracking 
algorithms and testing the system in various environments 
such as tracking of multiple objects in a wide area. 
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