
Journal of Computer Sciences and Applications, 2018, Vol. 6, No. 1, 17-22
Available online at http://pubs.sciepub.com/jcsa/6/1/2
©Science and Education Publishing
DOI:10.12691/jcsa-6-1-2

Computational Vision for Automatic Tracking and
Objective Estimation of Mobile Robot Trajectory

Sangho Park*

Department of Computer, Electronics and Graphics Technology, Central Connecticut State University, USA
*Corresponding author: spark@ccsu.edu

Abstract Automatic tracking and evaluation of moving-object trajectories is critical in many applications such as
performance estimation of mobile robot navigation. Mobile robot is an effective platform for stimulating student
motivation at K-12 institutions as well as a good tool for rigorous engineering practices in colleges, universities, and
graduate schools. Developing new mobile robot platforms and algorithms requires objective estimation of navigation
performance in a quantitative manner. Conventional methods to estimate mobile robot navigation typically rely on
manual usage of chronometer to measure the time spent for the completion of a given task or counting the success
rate on the task. This paper proposes an alternative; a multi-camera vision system that can automatically track the
movement of mobile robot and estimate it in terms of physics-based profiles: position, velocity, and acceleration of
the robot in the trajectory with respect to a user-defined world-coordinate system. The proposed vision system runs
two synchronized cameras to simultaneously capture and track the movement of the robot at 30 frames per second.
The system runs a homography-based projection algorithm that converts the view-dependent appearance of the robot
in the camera images to a view-independent orthographic projection mapped on the registered world coordinate
system. This enables the human evaluator to view and estimate the robot navigation from a virtual top-down view
embedded with the physics-based profiles regardless of the actual cameras’ viewing positions. The proposed system
can also be used for other domains including highway traffic monitoring and intelligent video surveillance.

Keywords: computational vision, object tracking, trajectory estimation, robot navigation, multiple view geometry

Cite This Article: Sangho Park, “Computational Vision for Automatic Tracking and Objective Estimation
of Mobile Robot Trajectory.” American Journal of Systems and Software, vol. 6, no. 1 (2018): 17-22.
doi: 10.12691/jcsa-6-1-2.

1. Introduction

Mobile robot development and competition has become
very popular in STEM (Science, Technology, Engineering
and Mathematics, [1]) education. Mobile robot is an
effective platform for stimulating student motivation at
K-12 institutions as well as a good tool for rigorous
engineering practices in colleges, universities, and
graduate schools. In robot design and development at all
levels of institution, it is import to objectively measure
and estimate the mobile robot’s navigation performance.
However, the usual practice in the performance evaluation
of mobile robot navigation is typically based on human
evaluator’s manual intervention using a chronometer to
measure the time of completion in a given task or
accuracy counting of pass / fail on the task. The manual
intervention is error-prone and can be biased as well. We
need a tool that reliably and objectively evaluates the
performance in an automated manner. It is also desirable
to develop an unobtrusive method that does not require
the attachment of any sensors, transponders, or beacons
to the mobile robot since such attachment will change
the weight of the robot not alone the complicacy of
the installation and management of such attachment.
A computer vision-based object detection and tracking

approach is a promising solution in this regard. Review of
general research on vision-based object detection and
tracking can be found in [2,3,4].

This paper presents a vision-based evaluation testbed
for mobile robot navigation by using multiple cameras.
The proposed system automatically records the movement
of the robots and objectively estimates their navigation
performance. Unlike the methods for robot’s self-localization
using heterogeneous sensors and robot models [5,6],
the proposed system provides a purely vision-based
testbed that evaluates the navigation performance in terms
of the physics-based profiles: position, velocity, and
acceleration of robot over time with respect to a given
world-coordinate system.

2. Methodology

Our methodology is based on multiple-view geometry
[7] in computational vision. The method starts by
modeling the process of image formation when a scene is
viewed through a camera. A pinhole camera model is
adopted as shown in Figure 1. Pinhole camera model [8]
assumes that exactly one ray from each point in the scene
passes through the pinhole lens and hits the image plane
opposite to the scene, forming the inverted image. For
convenience we use the virtual image in front of the

18 Journal of Computer Sciences and Applications

pinhole, forming the new image plane as shown in Figure
2. The mathematical description of the imaging process in
Figure 2 denotes the world scene coordinates with
uppercase roman letters {X, Y, Z} and image coordinates
with lowercase roman letters {x, y, z}. Note that the
vectors pointing from camera center C to the world
coordinate point and the corresponding image coordinate
point are denoted by boldface symbols, such as X and x,
respectively. The camera’s imaging process is to map the
point X denoted by coordinate value (X,Y,Z) in the 3D
space to the point x denoted by coordinate value (x,y) on
the 2D image plane. This process is mathematically
modeled in equation (1) as follows (,where the superscript
t means column vector notation.)

 (X, Y, Z)t Projection
�⎯⎯⎯⎯⎯⎯� (x, y)t (1)

Figure 1. Pinhole camera model. From Forsyth & Ponce, 2003

Figure 2. Image projection in a projective camera

Figure 3. Two views of points on a plane π ⊂ ℝ3. From Ma et al., 2001

As shown in Figure 3, if we use two cameras, each
of the camera forms image plane I1 and I2 with the
corresponding camera origins O1 and O2, respectively [9].
The second camera’s relative configuration with respect to
the first camera can be defined in terms of the relative
rotation R and translation T. Note that the same point p
in the world scene π appears very different in the two
image planes as vectors x1 and x2, respectively, due to
perspective distortion effect. Overall, the camera imaging
process is mathematically modeled as the mapping of a

viewed object from the 3D-world scene coordinate (X,Y,Z)
to the 2D image plane coordinate (x,y). This kind of
mapping from higher dimension to lower dimension
results in inevitable loss of information during the
downgrading transformation from the higher to lower
dimension. For example, depth information of a scene is
lost in 2D photo.

Our ultimate goal in computational vision is to recover
the lost information of the viewed object by the inverse
mapping from the 2D image coordinate (x,y) ∈ ℝ2 on the
image planes I1 and I2 to the world scene coordinate
(X,Y,Z) ∈ ℝ3 in the world scene π. This inverse mapping
will enable the accurate estimation of the world scene
given only the 2D image data. For this purpose, we need
at least two camera views in order to resolve the
ambiguity caused by the information loss during the initial
downgrade transformation. To resolve the ambiguity, we
first conduct the camera calibration that establishes the
camera configuration (R,T) of Figure 3, as expressed in
equation (2).

 𝒙𝒙𝟐𝟐 = 𝑅𝑅𝒙𝒙𝟏𝟏 + 𝑇𝑇. (2)
A perspective projection for planar homography [7]

is used to do the inverse mapping from image- to
world-coordinate system. A homography matrix H maps
corresponding points between image coordinate systems.
If we denote 𝐻𝐻𝑚𝑚𝑛𝑛 as the homography from arbitrary view m
to n, we can register multiple arbitrary camera views
by the series of concatenated homographies as shown in
equation (3).

 𝐻𝐻𝑚𝑚𝑛𝑛 = 𝐻𝐻𝑛𝑛+1
𝑛𝑛 𝐻𝐻𝑛𝑛+2

𝑛𝑛+1 ⋯ 𝐻𝐻𝑚𝑚−1
𝑚𝑚−2 𝐻𝐻𝑚𝑚𝑚𝑚−1. (3)

The 4-point algorithm [10] is used to compute the
homography matrix H. The four points are selected from
certain image corners or user-specified markers on the
ground plane Q.

Using the homography matrix H, we can write the
transformation of points in 3D from camera i to camera j
as in equation (4):

 𝑋𝑋𝑗𝑗 = 𝐻𝐻𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑖𝑖 ,𝑋𝑋𝑗𝑗 ∈ ℝ3. (4)
The j-th camera can even be a virtual camera viewing

the scene from top down. A point in view-1, x1, and a
point in view-2, x2, of the same 3D point q are mapped to
𝑥𝑥1
𝑣𝑣 and 𝑥𝑥2

𝑣𝑣 on the common virtual view of the ground
plane by individual planar homography matrices 𝐻𝐻1

𝑣𝑣 and
𝐻𝐻2
𝑣𝑣 , respectively in equations (5) and (6), as follows:

 𝑥𝑥1
𝑣𝑣 = 𝐻𝐻1

𝑣𝑣 𝑥𝑥1 (5)
 𝑥𝑥2

𝑣𝑣 = 𝐻𝐻2
𝑣𝑣 𝑥𝑥2 (6)

The two versions of the inverse mapping from the two
cameras are joined to a common ground [7] and generates
a virtual top-down plan view of the world scene π.

By using the 4-point algorithm [9], the homography
matrix H can correct the projective distortion of image
planes I1 and I2 in Figure 3 and map on to the virtual top-
down plan view that represents the world scene plane π.
This virtual top-down view of the world scene is camera-
independent and orthographic, and provides the objective
measure of the actual scene dimensions without view-
dependent appearance. The orthographic virtual top-down
plan view also enables the generation of the navigation

 Journal of Computer Sciences and Applications 19

trajectory profile of moving objects in terms of position,
velocity, and acceleration on the world scene coordinate
system.

3. Design and Implementation

The overall system diagram is depicted in Figure 4. The
system starts from the camera calibration after deploying
the cameras to specific locations. The calibrated and
synchronized cameras (camer-1 and camera-2) keep
capturing the synchronized image frames. Computer
vision algorithms conduct perspective projection and
planar homography mapping as explained in the previous
section. Color-based object tracking algorithm [11,12,13]
follows the processing, and the navigation-trajectory
profiling is achieved by analyzing the results of the object
tracking.

Figure 4. Overall System Diagram for the processes from imaging to
trajectory profiling

The system diagram is implemented into a prototype
testbed composed of two cameras, a frame-grabber board,
a desktop computer, and a flat table as shown in Figure 5.
The current testbed uses two synchronized cameras, and
they can be mounted in versatile manner: for top-down
view or arbitrary oblique views depending on user’s need.
In Figure 5, the left-view camera is installed on top of a
tripod while the right-view camera was attached to a
clamp fastened on a bookshelf cabinet. The flat table used
as a prototype testbed.

Figure 5. Testbed configuration using a flat table and two synchronized
cameras. Left-view camera on the tripod, right-view camera on the clamp

The left- and right-view images captured by the
cameras are shown in Figure 6. The appearance of the
same flat table looks very different on the left- and

right-view images due to the perspective effects of the two
cameras. We define the world seen coordinate system on
the flat table in terms of the origin O and X- and Y-axis
extended from the origin as shown in the right side image
of Figure 6. Note that it is conventional to define the
image domain’s Y-axis to extend toward row direction of
the image (in Figure 6), while the mathematical definition
of the Y-axis is opposite to it (in Figure 2.)

Figure 6. Left- and right-view images of the testbed. World coordinate
system is defined on the testbed (overlaid for visualization on the right-
view image.)

Figure 7. Snapshot of camera calibration using a standard calibration
pattern

Camera calibration is achieved by using a standard
checker board pattern shown in Figure 7. Multiple
snapshots of the calibration board at different positions are
used in the procedure.

Figure 8. Snapshot of pilot study using a small mobile robot (indicated
by arrow) on the testbed

Figure 8 shows the left- and right-view snapshot of the
experimental run of a micro-robot running on the flat table.
The micro-robot is indicated by the arrows for readers’
convenience. Individual trajectory points of the robots are
time-stamped, and the calculation of the position, velocity,
and acceleration provides the full description of the robot
movements. We tested two different micro-robots of
different running speed for the implementation of the
prototype testbed.

The testbed has an intuitive user interface as in Figure 9
with which students can run the system easily and
visualize the trajectories intuitively. The control software
for the video capture and the display on GUI frontend in
Figure 9 was written in C++ language. The prototype
system was set up in the author’s office space, but the
system is scalable to deploy to larger environments such
as a bigger lab floor for mini-robots or a spacious gym
floor for bigger robots. Different deployment options do
not require the software code modification; only the
camera calibration needs update for the new camera
positions.

20 Journal of Computer Sciences and Applications

Figure 9. Graphical-user-interface frontend that controls the system and visualizes results. The overlaid world coordinate system of O, X, Y complies to
that of the testbed in Figure 6

4. Experiments

The prototype testbed was extended at a larger scale
and applied to real-world experiments. The extended
testbed used in the experiment is composed of two
cameras, a desktop computer, and a flat floor area as
shown in Figure 10.

Figure 10. Testbed (left) using two synchronized cameras A, B and their
views (right)

The two synchronized cameras are marked ‘A’ and
‘B’ for readers’ convenience. The upper-right view in
Figure 10 is from camera-A, while the lower-right view in
Figure 10 is from camera-B. The labels O, U, V, and
D are add-on for readers’ convenience, and indicate the
locations of the markers placed on the floor for the 4-point
algorithm [12] to specify the user-defined world coordinate
system.

The appearance of the same scene looks very different
on the camera-A vs. camera-B images due to the different
perspectives. We define the world coordinate system on
the flat area in terms of the origin O and U- / V-axis
extended from the origin. Camera calibration is achieved
by using a standard checker board pattern shown in Figure
10. Multiple snapshots of the calibration board at different
positions are used in the procedure.

Figure 11 shows a remote control car used in the experiment,
and the two camera views of the car on the testbed. We
used a remote control car with a known maximum speed
(i.e., 8-12 miles per hour or 3.5 – 4.3 meters per second) in
the experiment. The right-most picture of Figure 11 shows
the plannar-homography mapping of the two camera views
to achieve a virtual top-down view on the user-defined
world coordinate system. The world coordinate system is
defined by the horizontal axis between two points O and U
(denoted by the horizontal line) and the vertical axis
between O and V (denoted by the vertical line) in Figure 11.

The automatic tracking of remote-control car is achieved
by color-histogram based object tracking algorithm
[11,12,13]. The algorithm was chosen for its real-time
processing speed and efficiency. This experiment assumes
the remote-control car is distinct in color. The tracking
algorithm generates a fitted ellipse overlaid on the tracked
object (i.e., remote-control car) as shown in Figure 11 and
Figure 12. The center of the ellipse comprises the
individual trajectory point along the video frames. The
individual trajectory points of the robot are time-stamped,
and the calculation of the position, velocity, and
acceleration provides the full description of the robot
movements. It is straightforward to convert between image
coordinate system (U,V) vs. mathematical coordinate system
(X,Y) [9].

 Journal of Computer Sciences and Applications 21

Figure 11. Snapshot of experiment using a small remote-control car in lieu of mobile robot on the testbed

Figure 12. Examples of tracking: linear navigation (top row) vs. circular navigation (bottom row)

Figure 12 shows two instances of tracking: linear
navigation (shown in the top row) and circular navigation
(shown in the bottom row). Each homography-mapped
frame contains the information of the frame number, the
position, velocity, and acceleration of the tracked mobile
car in the image coordinate units (i.e., pixels.)

The testbed has an intuitive user interface (Figure 5 and
Figure 11) with which students can run the system easily
and visualize the trajectories intuitively.

Figure 13. Example profile of a navigation trajectory

Figure 13 shows an example profile of a cumulative
navigation trajectory that involves 1830 frames (including
those in Figure 12.) The tracking algorithm of the control
software successfully tracks the moving robot and assigns
the enclosing ellipse with track ID as shown in Figure 11

and Figure 12. The center position (xi, yi) of the ellipse at
the i-th frame is regarded as the position of the robot at the
given time. The instantaneous velocity is defined as a
vector v�⃗ i = �vx, vy�i

 in terms of the differential location
in x- and y-axis between the current i-th frame and the
previous (i-1)-th frame. The velocity components vx and
vy are defined in equations (7) and (8):

 i i 1
x

x x
v

t
−−

=
∆

 (7)

 i i 1
y

x x
v .

t
−−

=
∆

 (8)

The speed of velocity is defined by the amplitude of the
vector in equation (9):

 2 2
x yv v v .= + (9)

Figure 14 shows the speed profile for the navigation
trajectory of the Figure 13. The horizontal axis is frame
number, while the vertical axis is speed in [mm/sec]. It
shows multiple sharp spike noises, which are due to
imaging noise and tracking error. But human interpreter
can easily rule out those noise points from the speed
profile. The typical value of the measured speed on
the smooth bumps/plateaus of the Figure 14 profile is
approximately 2 [meters/sec], which is reasonable in the
current experimental setting.

22 Journal of Computer Sciences and Applications

Figure 14. Speed profile for the navigation trajectory of Figure 13

The instantaneous acceleration is defined in equation
(10) as the vector difference between the current i-th
frame and the previous (i-1)-th frame:

 i i 1
i

v v
a .

t
−−

=
∆

 

 (10)

The control software for the video capture, the object
tracking, and the profile generation was written in
C++ language. We tested the proposed system with a
general-purpose desktop PC installed with Microsoft
Windows 7 operating system and 3.4 GHz Intel Core i7
CPU. The experimental testbed captures two synchronized
camera images at 30 frames per second, and the
color-based tracking algorithm runs almost in real-time;
tracking speed may vary slightly depending on the
imaging quality. The current system was setup in a small
lab space, but the system is scalable to deploy to larger
environments such as a bigger floor for moderate-size
robots or a spacious gym floor for bigger robots. Different
deployment options do not require the software code
modification; only the camera calibration needs update for
the new camera positions.

The proposed system provides objective trajectory
profiles of the robot navigation in terms of the position,
velocity, and acceleration at every frame. Some inaccuracy is
induced at some images; most of the disturbance in the
accuracy is from imaging noise and tracking errors; it is an
open research issue in computer vision to achieve a robust
detection and perfect tracking.

5. Conclusion and Future Work

This paper presented a vision-based evaluation testbed
for mobile robot navigation. The testbed can be used
to estimate mobile robot navigation in quantitative manner
and to provide students and developers with insights about
objective performance evaluation based on the physics-based
profile. The proposed system is a general-purpose system
that can be deployed to estimate the navigation of various
moving objects including, but not limited to, mobile robots.
The developed system is versatile in that the cameras can
be installed in various configurations such as top-down
viewing direction or arbitrary oblique viewing directions
as long as the two views are not in parallel. The system is
non-obtrusive since it is purely vision-based and does
not require the attachment of any sensors, transponders,
or beacons to the tested object. The future research

plan includes the improvement of imaging and tracking
algorithms and testing the system in various environments
such as tracking of multiple objects in a wide area.

Acknowledgements

This research was supported and funded by AAUP
MR&R Research Grant from Central Connecticut State
University.

References
[1] National Science Board. “Preparing the Next Generation of STEM

Innovators: Identifying and Developing our Nation’s Human
Capital,” 2010. Retrieved from:
http://www.nsf.gov/nsb/publications/2010/nsb1033.pdf.

[2] Aggarwal, J.K. and Cai, Q. “Human motion analysis: a review”.
Computer Vision and Image Understanding, 73(3): 295-304. 1999.

[3] Gavrila, D. “The visual analysis of human movement: a survey”.
Computer Vision and Image Understanding, 73(1): 82-98. 1999.

[4] T.B. Moeslund, T. B. and E. Granum, E. “A survey of computer
vision-based human motion capture”. Computer Vision and Image
Understanding, 81(3): 231-268. 2001.

[5] Beinhofer, M. & Burgard, W. “Efficient Estimation of Expected
Distributions for Mobile Robot Navigation”, Proc. of the Austrian
Robotics Conference. 2014.

[6] Suliman, C., Cruceru, C. & Moldoveanu, F. “Mobile Robot
Position Estination Using the Kalman Filter”, Scientific Bulletin
of the Petru Maior University of Tirgu Mures, Vol. 6 (XXIII).
2009.

[7] Hartley, R. & Zisserman, A. Multiple View Geometry in
Computer Vision, 2nd ed. Cambridge University Press. 2003.

[8] Forsyth, D. and Ponce, J. Computer Vision: A Modern Approach,
Prentice Hall, 2003.

[9] Ma, Y., Soatto, S., Kosecka, J., & Sastry, S. An Invitation to 3-D
Vision: From Images to Geometric Models, Springer Ltd. 2001.

[10] Criminisi, A., Reid, I. & Zisserman, A. “A plane measuring
device”, Image and Vision Computing, 17(8):625-634, 1999.

[11] Allen, J.G., Xu, R.Y.D., & Jin, J.S. “Object Tracking Using
CamShift Algorithm and Multiple Quantized Feature Spaces”, in
Conferences in Research and Practice in Information Technology,
Vol. 36. M. Piccardi, M., Hintz, T., He, X., Huang, M.L., Feng,
D.D. & Jin, J. Editors. 2004.

[12] Bradski, G.R. “Computer Vision Face Tracking for Use in a
Perceptual User Interface”, Intel, 1998

[13] Fukunaga, K. “Introduction to Statistical Pattern Recognition,”
Academic Press, Boston, 1990.

[14] Park, S. and Trivedi, M. “Understanding Human Interactions with
Track and Body Synergies (TBS) Captured from Multiple Views,”
Computer Vision and Image Understanding: Special Issue on
Intelligent Visual Surveillance, 111(1), pp. 2-20, Elsevier Inc.
2008.

