
Journal of Computer Sciences and Applications, 2018, Vol. 6, No. 1, 43-47
Available online at http://pubs.sciepub.com/jcsa/6/1/6
©Science and Education Publishing
DOI:10.12691/jcsa-6-1-6

DotCode Damage Testing

Kevin Berisso*

Department of Engineering Technology, University of Memphis, Memphis USA
*Corresponding author: kberisso@memphis.edu

Abstract The DotCode bar code symbology is relatively new, having been developed by Dr. Andrew Longacre in
2007. As a result of standards organization work being done on the symbology, it was determined that valid
encoding patterns could result in symbols that could not be decoded by the current reference decode algorithm. A
solution for resolving the issue involved the introduction of intentional errors that rely on the correct functioning of
the Reed-Solomon Error Correction (RSEC) to resolve the original message. However, the actual impacts of such a
decision were publicly unknown. This paper has undertaken the task of validating the impacts of intentionally
adding additional data bits to the bar code, resulting in the generation of errors in what should otherwise be perfect
symbols.

Keywords: DotCode, bar code, 2D bar code, reed-solomon error correction

Cite This Article: Kevin Berisso, “DotCode Damage Testing.” Journal of Computer Sciences and
Applications, vol. 6, no. 1 (2018): 43-47. doi: 10.12691/jcsa-6-1-6.

1. Introduction

The DotCode bar code symbology was developed to
address problems that can occur within high speed
printing applications in the supply chain [1]. Comprised of
a series of dots on a diagonal grid (see Figure 1), the
symbology is inherently robust to changes in line speed,
clogged ink jets and other printing problems.

Figure 1. Example of the DotCode symbology. The “Barcode Scanners”
app by Cognex can be used to scan DotCode using either Apple or
Android devices

During testing by Mr. Terry Burton of his Postscript
encoder [2], it was found that some instances of the
processed data resulted in encoding patterns that generated
symbols with entire outer rows or columns that were blank.
Due to the nature of how DotCode operates, a missing row
and or column would result in an otherwise properly
encoded and printed symbol but for which the reference
decode algorithm would fail to decode, as seen in Figure 2.

To combat this issue, Mr. Richard Skokowski suggested
that the encoders always print some of the six dots that
make up the four corner positions of the symbol as a way
to avoid unprinted edges [3]. It was suggested that even
though this would intentionally impart Reed-Solomon
Error Correction (RSEC) errors into the symbol prior to
printing, the benefits would significantly outweigh the
danger of generating a symbol that had an entire outer
row or column of dots missing automatically resulting
in a symbol that could not be scanned without a more

sophisticated decode algorithm than the current standard
that is already deployed.

Figure 2. Symbols with the same data (“874130”), but using different
masks resulting in a missing bottom row (left) which prevents the
symbol from being decoded whereas the right symbol can be decoded

This paper reports on the results of testing that occurred
at the University of Memphis. The testing attempted to
determine if the assumption that the intentionally
introduced RSEC errors would have a negligible impact
on the performance of bar codes scanned at simulated
production-level speeds.

2. Discussion

The DotCode symbology is a part of the matrix
symbology family of bar codes. This family of
symbologies (types of bar codes) is most easily identified
by the clear mapping of modules in some sort of regular
grid or matrix pattern. Examples of commonly seen matrix
symbologies include QR Codes, Data Matrix, Maxicode
and Aztec Code (see Figure 3).

Figure 3. Samples of some common matrix symbologies, QR Code (left),
Data Matrix (middle left), Maxicode (middle right) and Aztec Code
(right)

44 Journal of Computer Sciences and Applications

Figure 4. (Color online) DotCode on a pack of cigarettes purchased in
Greece. Picture taken by Alexandra Valtzidou

Experiencing adoption at some European cigarette
manufacturing facilities, DotCode is allowing companies
and government entities to apply unique, serialized
machine-readable codes onto products that are run on high
speed manufacturing and labeling lines (see Figure 4).
Due to the importance of easily decodable bar coded data
on products [4-9], those industries that print bar codes
on-demand at the time of manufacture or packaging need
solutions that are robust enough to ensure quality printing
during the often bumpy and turbulent manufacturing
process. DotCode was specifically developed with a
separated module design to help absorb any inadvertent
movement of the printing target (e.g. label, box, etc.)
during the application of the bar code [1].

Specifically characterized as a 5-of-9 symbology,
where five out of every nine data dots are black, DotCode
is capable of encoding 112 unique code words in one of
three code sets in a simple on/off pattern. The pattern is
encoded within a matrix that is characterized by having a
diagonal grid that is reminiscent of a checker or chess
board and for which the number of rows and columns
always add up to an odd sum. The symbology employs a
RSEC methodology that consumes approximately 33%
of the overall symbol size and is capable of encoding
various character sets via the optional extended channel
interpretation mechanism [1].

2.1. Encodation Method
DotCode is encoded by converting the data into a

series of 5-of-9 dot patterns per the rules of the
AIM International Symbology Standard Information
technology - Automatic identification and data capture
techniques - Bar code symbology specification - DotCode
[1]. Data compactness is achieved via the selective use of
shifts and latches within the three code sets (A, B and C)
and logic rules that are provided to help ensure encoding
efficiency. Once the data has been encoded, the correct
number of RSEC codewords is added to the data stream,
per Equation (1) from the standard.

 ()NC 3 ND div 2= + (1)

where,
NC = Number of RSEC code words
ND = Number of data code words

The resulting codewords are converted to their binary
coded decimal nine-dot patterns, the addition of padding
codewords is determined and two dots are reserved for the
mask indicator which is discussed in the next section. The
minimum final dot count is determined by Equation (2)

 ()()Min Dot Count 9 x ND 3 ND div 2 2 data dots= + + + (2)

where,
ND = Number of data code words

2.2. Masks and Scores
Once the dot stream has been generated, the resulting

pattern is processed through the normative scoring routine
provided in the specification and compared against a
nominal threshold that is calculated as

 .
2

rows x columnsThreshhold = (3)

The goal of the scoring is to prevent instances where
there are large gaps in the dot pattern that could
potentially impact the ability of the symbol to be decoded.
Per the specification, the goal is to have the symbol’s
score exceed the calculated threshold. As seen in Figure 5,
by applying one of four masking methodologies to
the symbol, missing columns in the symbols can be
minimalized if not completely eliminated.

Figure 5. Symbols with the same data (“0242FZ5CGW0D”), encoded in
a 7 row by 50 column pattern using masks 0-3 (top to bottom) showing
how the masks can eliminate blank columns (masks 0 and 4). The scores
for each mask are -106, 137, 325 and -15 respectively and the threshold
is 175

2.3. Placing the Dots
The DotCode specification indicates that a properly

printed symbol must be configured such that the sum of
the rows and columns result in an odd number. This
allows for an unambiguous determination as to whether
the symbol is encoded starting at the upper left corner or
the lower left corner [1]. If the number of rows are even
then data is encoded in the columns, moving from left to
right and top to bottom. If the number of rows are odd
then the data is encoded moving from left to right starting
at the bottom row and progressing to the top row. Figure 6
shows the two encoding patterns.

2.4. Unlit Edge Issue
Due to the encodation pattern shown above in Figure 6,

it is possible to generate DotCode symbols that have

 Journal of Computer Sciences and Applications 45

missing edges; where all dots are in the “off” state. In
instances where the missing edge is the “second edge”
(dots 4, 8 and 12 in Figure 6), the current decode logic
may be able to compensate for this. However, when the
“first edge” (dots 1 and 2 in Figure 6) where the mask is
identified or when multiple edges are missing, the bar
code scanner’s ability to determine how to decode the
information becomes sufficiently compromised, resulting
in an inability to decode the information. Figure 7, shows
such an example.

Figure 6. Two symbols showing the sequence (the numbered circles)
and direction in which the dots are encoded. The left pattern is 7 rows x 6
columns and the right image is 6 rows by 7 columns

Figure 7. (Color online) Symbols with the same data (“038451”),
encoded in a 10 row by 13 column pattern using masks 0 (left) and 3
(right) showing how a symbol could inadvertently be generated that is
missing multiple edges. The light red boarders indicate the edges of the
grid

It is due to this potential that it was proposed that all
four corners always be asserted (the dots are always black)
whenever any of the edges were unlit. The result would be
that, in Figure 6, dots 1, 2, 4, 12, 14 and 13 would always
be “on” (having a binary value of one). In these instances
this would result in additional dots in the stream, resulting
in the triggering of the RSEC logic during the decode
process; potentially resulting in an increase to the overall
decode time.

3. Methodology

To determine the impacts of various levels of intentional
errors on symbols though the illumination of all four
corners, a high-speed conveyor simulator was developed
and scanners were positioned above the path as shown in
Figure 8. The simulator has 30 stations on which 1” x 4”
labels could be attached. The system is capable of speeds
of up to 300 feet per minute for a resulting maximum
“box” rate of 30 boxes per second. The bar code scanners
were configured to only scan DotCode symbols and had
their window of interest (the portion of the image that was
processed) limited such that only the symbols, and not the
entire label, were processed as a way help improve the
processing time required. The reason for this was that at
30 scans per second, the scanner only had 33 milliseconds

in which to acquire, decode and fix scanned bar codes. It
should be noted at this time that the scanners used were
configured to the best of the author’s abilities but due to
budgetary limitations, the proper external strobe lighting
the application called for was not available. As a result,
the performance of the two scanners used may not be truly
representative of the equipment’s performance potential.

Figure 8. (Color online) Testing rig. Visit vimeo.com/229003022 for
video footage of the system

The scanners were configured to transmit the bar code
data and the scanner’s internally reported decode time, a
diagnostic tool that helps the hardware integrator to
determine if the scanner is optimally aligned. Data
collection was accomplished via the scanner’s serial ports
and physical serial ports (not USB to serial adapters) on
the data collection computers. The free software package
RealTerm (sourceforge.net/projects/realterm/) was used to
log the data. The system originally used custom data
logging software. However due to inefficiencies in the
program, data was being corrupted or lost, resulting in the
decision to switch to RealTerm.

Twenty-nine unique bar code symbols were generated
in Seagull Scientific’s Bartender Designer 2016 R3
software. For instances where intentional damage was
being introduced, the symbols were exported out of
Bartender and imported into Adobe Photoshop where the
necessary additions and erasures were generated (see
Figure 9). The images where then printed on a color laser
printer and were attached to the test rig. A symbol
encoding the word “UOMDIVIDER0F” was placed in the
30th test position to provide the researchers with an index
point in the data stream. Efforts were made to ensure the
labels were placed in the same place each time, but due to
the manual nature of the process, the window of interest
for each scanner was also updated to help ensure as
consistent a decode time as was possible.

Figure 9. (Color online) Sample symbol showing one additional dot
(dark blue dot) and one erasure (red dot) within the first codeword. The
use of red dots was because it was determined the scanners filtered out
red, which resulted in the red dots appearing as white to the scanners
while allowing the researcher to still see the deleted dot

As previously discussed, the illumination of the corner
dots was the prime consideration in symbol selection. So
as to provide additional data points, symbols with one,

46 Journal of Computer Sciences and Applications

two and three errors to the encodation pattern were
included. Table 1, shows the various combinations of
errors introduced to the symbols for testing.

Table 1. Damage test matrix. “Add” indicates that a dot was added
and “Del” indicates that a dot was removed

 Codeword Damage

 1st 2nd 3rd

Run Del Add Del Add Del Add

1 Baseline - No Damage

2 X
3 X
4 X X
5 X X X
6 X X X X X

7 X X X X X X

The simulator was run at 120 feet per minute to ensure

sufficient decode time and nine hundred scans of each symbol
for each of the two scanners used was undertaken. The data
was captured and processed via Minitab. After completing
the initial data run, which was used for an initial data analysis,
additional runs were undertaken to allow for a fuller
descriptive data analysis resulting in an overall data set
that exceeded 12.6 million scans. This additional data was
left out of the initial analysis so as to prevent the overall
power of the analysis from becoming too great [10,11].

4. Results

An analysis of variance for the initial tests showed that
there were statistically significant differences for the
scanned bar code, F(28, 12024) = 4.30, p = 0.00, the level
of damage, F(6,12024) = 29.36, p = 0.00, and the reader,
F(1, 12024) = 722.46, p = 0.00, with no statistically
significant grouping.

Figure 10. (Color online) Average scanner decode times for each
damage run. Decode times are in milliseconds

Upon completion of the initial data runs, the extended
data runs were executed and the overall aggregate results
were compiled. As can be seen in Figure 10, a dip in the
decode time for run “2” on scanner “A” occurred. The
cause of this is not known, although this dip occurred
after repeated attempts at ensuring that the scanner was
correctly adjusted for both runs “1” and “2”. Additionally,

the generally upward trend noticed for reader “A” was a
repeatable occurrence. Discussions with the manufacturer
were not able to resolve the cause of this trend, as they
believed that it shouldn’t exist. However, since the results
were repeatable, it has been assumed that the cause was
either due to a) optimization routines within the reader
that were not being disclosed or b) that there were slight
imperfections in the setup and configuration of the reader
(e.g. focus point, alignment, etc.) that were somehow
impacting the performance of the reader when reading that
specific set of symbols.

In addition to the odd dip in Figure 10, Figure 11, and
Table 2, show that the consistency of performance of
reader “B” was much better than reader “A”. Once again,
it was assumed that much of the inconsistency was due to
the configuration and setup of the test rig and was not
indicative of the scanner’s true performance potential.
Table 2, shows the overall descriptive statistics for the
larger data sets. The variations in total bar codes scanned
were due a limited time frame for which the bar code
scanners could be used as they were needed for use in an
academic class. As the smallest data run was for over 440
thousand scans, it was felt that the additional data points
would not provide a significant difference in the results.

Figure 11. (Color online) Average decode by scanner and symbol for
each damage run. Decode times are in milliseconds

From a practical viewpoint, the existence of a statistical
significance between the various error levels can most
likely be ignored. The lack of any statistically significant
grouping during the initial post hoc analysis further
strengthens this argument. As can be seen in the overall
descriptive statistics, scanner “A” shows a 4.1 millisecond
average range and scanner “B” a mere 1.2 millisecond
average range. In either case even at speeds of 30 scans

 Journal of Computer Sciences and Applications 47

per second, the scanner has 33 milliseconds with which to
find and decode a bar code. At 18.1 milliseconds, the extra

4.1 milliseconds would not necessarily prevent an undue
number of reads to fail due to insufficient time.

Table 2. Overall descriptive statistics results by scanner.

Scanner A
Run 1 2 3 4 5 6 7
Mean 16.6 14.0 17.3 17.8 17.8 16.4 18.1
Median 12 13 16 16 16 16 16
Mode 12 11 14 14 14 16 14
Std Dev 10.8 6.4 8.8 9.4 8.4 6.7 8.7
Kurtosis 11.2 28.8 25.1 22.4 20.2 41.7 18.8
Skewness 3.2 4.9 4.9 4.5 4.2 6.0 4.0
Min Time 10 9 11 13 12 12 12
Max Time 75 71 82 82 82 82 84
Total Reads 1,000,003 1,018,411 1,000,001 834,011 1,000,002 443,444 833,994

Scanner B
Run 1 2 3 4 5 6 7
Mean 18.1 18.7 18.3 17.8 18.4 18.5 18.9
Median 18 19 18 18 18 18 18
Mode 18 19 18 18 18 18 18
Std Dev 0.5 1.9 0.8 3.5 0.9 1.0 1.8
Kurtosis 69.7 72.1 216.7 20.9 128.0 37.6 31.8
Skewness -1.4 -6.4 -8.0 -4.6 -4.0 0.5 -2.3
Min Time 10 9 11 13 12 12 12
Max Time 75 71 82 82 82 82 84
Total Reads 1,000,003 1,018,411 1,000,001 834,011 1,000,002 443,444 833,994

5. Conclusion

While it may be assumed by bar code experts that the
intentional inclusion of RSEC errors will have at most a
marginal impact on overall performance, this study has
shown that from an applied point of view, the impact of
intentionally added errors to the DotCode symbology will
result in, on average an extra 4.1 milliseconds to the
decode time. And while the inclusion of intentional errors
into a bar code symbol is never ideal, the added security of
ensuring that a symbol is not inadvertently generated
without a sufficient structure that ensures decoding can be
easily argued. However, this conclusion needs to be
embraced with caution as the one thing that this study did
not attempt to address is the impact on decode time of
errors in instances where a significant portion of the
error correction code words were consumed. In instances
where other damage to the dot code stream has occurred
naturally (e.g. damaged labels, partially covered bar codes,
etc.), the addition of intentionally induced errors could
potentially result in significantly higher decode times or
failed decodes.

Acknowledgements

This work would not have been possible without the
support of Cognex, Microscan and Seagull Scientific. Cognex
and Microscan both donated bar code scanners. Bartender
Designer 2016 R3 was donated by Seagull Scientific.
Additionally, the advice of the members of the AIM
Technical Symbology Committee (www.aimglobal.org)
was invaluable in both the design and analysis of the
results. Further help was provided by Mr. Terry Burton.

His encoder can be found at bwipp.terryburton.co.uk/.
Finally, the personal assistance of Dr. Andrew Longacre
was invaluable in understanding how the symbology
worked and in how to best design some of the test
symbols.

References
[1] AIM Global, Information technology — Automatic identification

and data capture techniques — Bar code symbology specification
— DotCode - Public Review, Cranberry Township, PA: AIM, Inc,
2017.

[2] Burton, T. Proposed "Mask Score, Print Quality Parameter”, 2017.
[3] AIM Global, TSC 1709-29-Min-TSC DotCode Public Review

Meeting_Sep17.
[4] Cognex, "The Rise of DotCode," Cognex, 26 August 2014.

[Online]. Available:
https://manateeworks.com/blog.[Accessed 21 February 2018].

[5] Dean, K. GS1 DotCode Impact Assesment. Inexto SA, Lausanne,
Switzerland, 2017.

[6] Holliday, D. "Traceability Coding for Tobacco Products," 21
January 2016. [Online]. Available:
http://www.labelingnews.com/2016/01/traceability-coding-for-
tobacco-products/. [Accessed 21 February 2018].

[7] Nachtrieb, J. "DotCode: A real solution to a real problem -
Barcode Test," Barcode-test, 1 August 2017. [Online]. Available:
http://barcode-test.com/dotcode-real-solution-real-problem/.
[Accessed 21 February 2018].

[8] Reynolds, P. "Walmart roils the case-coding waters," 26 April
2016. [Online]. Available:
https://www.packworld.com/print/63634. [Accessed 1 March
2018].

[9] Rittenburg, J. "Safety in Numbers," Pharmaceutical Executive, 26
(6) pp. 46-50, June 2006.

[10] Baguley, T. "Understanding statistical power in the context of
applied research," Applied Ergonomics, 35 (2), pp. 73-80, 2004.

[11] Lin, M., Lucas, H. C. and Shmueli, G. "Too Big to Fail: Large
Samples and the p-value problem," Information Systems Research,
24 (4), pp. 906 - 917, 2013.

