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Abstract  The DotCode bar code symbology is relatively new, having been developed by Dr. Andrew Longacre in 
2007. As a result of standards organization work being done on the symbology, it was determined that valid 
encoding patterns could result in symbols that could not be decoded by the current reference decode algorithm. A 
solution for resolving the issue involved the introduction of intentional errors that rely on the correct functioning of 
the Reed-Solomon Error Correction (RSEC) to resolve the original message. However, the actual impacts of such a 
decision were publicly unknown. This paper has undertaken the task of validating the impacts of intentionally 
adding additional data bits to the bar code, resulting in the generation of errors in what should otherwise be perfect 
symbols. 
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1. Introduction 

The DotCode bar code symbology was developed to 
address problems that can occur within high speed 
printing applications in the supply chain [1]. Comprised of 
a series of dots on a diagonal grid (see Figure 1), the 
symbology is inherently robust to changes in line speed, 
clogged ink jets and other printing problems. 

 

Figure 1. Example of the DotCode symbology. The “Barcode Scanners” 
app by Cognex can be used to scan DotCode using either Apple or 
Android devices 

During testing by Mr. Terry Burton of his Postscript 
encoder [2], it was found that some instances of the 
processed data resulted in encoding patterns that generated 
symbols with entire outer rows or columns that were blank. 
Due to the nature of how DotCode operates, a missing row 
and or column would result in an otherwise properly 
encoded and printed symbol but for which the reference 
decode algorithm would fail to decode, as seen in Figure 2. 

To combat this issue, Mr. Richard Skokowski suggested 
that the encoders always print some of the six dots that 
make up the four corner positions of the symbol as a way 
to avoid unprinted edges [3]. It was suggested that even 
though this would intentionally impart Reed-Solomon 
Error Correction (RSEC) errors into the symbol prior to 
printing, the benefits would significantly outweigh the 
danger of generating a symbol that had an entire outer  
row or column of dots missing automatically resulting  
in a symbol that could not be scanned without a more 

sophisticated decode algorithm than the current standard 
that is already deployed. 

 

Figure 2. Symbols with the same data (“874130”), but using different 
masks resulting in a missing bottom row (left) which prevents the 
symbol from being decoded whereas the right symbol can be decoded 

This paper reports on the results of testing that occurred 
at the University of Memphis. The testing attempted to 
determine if the assumption that the intentionally 
introduced RSEC errors would have a negligible impact 
on the performance of bar codes scanned at simulated 
production-level speeds. 

2. Discussion 

The DotCode symbology is a part of the matrix 
symbology family of bar codes. This family of 
symbologies (types of bar codes) is most easily identified 
by the clear mapping of modules in some sort of regular 
grid or matrix pattern. Examples of commonly seen matrix 
symbologies include QR Codes, Data Matrix, Maxicode 
and Aztec Code (see Figure 3). 

 

Figure 3. Samples of some common matrix symbologies, QR Code (left), 
Data Matrix (middle left), Maxicode (middle right) and Aztec Code 
(right) 
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Figure 4. (Color online) DotCode on a pack of cigarettes purchased in 
Greece. Picture taken by Alexandra Valtzidou  

Experiencing adoption at some European cigarette 
manufacturing facilities, DotCode is allowing companies 
and government entities to apply unique, serialized 
machine-readable codes onto products that are run on high 
speed manufacturing and labeling lines (see Figure 4). 
Due to the importance of easily decodable bar coded data 
on products [4-9], those industries that print bar codes  
on-demand at the time of manufacture or packaging need 
solutions that are robust enough to ensure quality printing 
during the often bumpy and turbulent manufacturing 
process. DotCode was specifically developed with a 
separated module design to help absorb any inadvertent 
movement of the printing target (e.g. label, box, etc.) 
during the application of the bar code [1]. 

Specifically characterized as a 5-of-9 symbology, 
where five out of every nine data dots are black, DotCode 
is capable of encoding 112 unique code words in one of 
three code sets in a simple on/off pattern. The pattern is 
encoded within a matrix that is characterized by having a 
diagonal grid that is reminiscent of a checker or chess 
board and for which the number of rows and columns 
always add up to an odd sum. The symbology employs a 
RSEC methodology that consumes approximately 33%  
of the overall symbol size and is capable of encoding 
various character sets via the optional extended channel 
interpretation mechanism [1]. 

2.1. Encodation Method 
DotCode is encoded by converting the data into a  

series of 5-of-9 dot patterns per the rules of the  
AIM International Symbology Standard Information 
technology - Automatic identification and data capture 
techniques - Bar code symbology specification - DotCode 
[1]. Data compactness is achieved via the selective use of 
shifts and latches within the three code sets (A, B and C) 
and logic rules that are provided to help ensure encoding 
efficiency. Once the data has been encoded, the correct 
number of RSEC codewords is added to the data stream, 
per Equation (1) from the standard. 

 ( )NC 3 ND div 2= +  (1) 

where, 
NC = Number of RSEC code words 
ND = Number of data code words 

The resulting codewords are converted to their binary 
coded decimal nine-dot patterns, the addition of padding 
codewords is determined and two dots are reserved for the 
mask indicator which is discussed in the next section. The 
minimum final dot count is determined by Equation (2) 

 ( )( )Min Dot Count 9 x ND 3 ND div 2 2 data dots= + + +  (2) 

where, 
ND = Number of data code words 

2.2. Masks and Scores 
Once the dot stream has been generated, the resulting 

pattern is processed through the normative scoring routine 
provided in the specification and compared against a 
nominal threshold that is calculated as 

   .
2

rows x columnsThreshhold =  (3) 

The goal of the scoring is to prevent instances where 
there are large gaps in the dot pattern that could 
potentially impact the ability of the symbol to be decoded. 
Per the specification, the goal is to have the symbol’s 
score exceed the calculated threshold. As seen in Figure 5, 
by applying one of four masking methodologies to  
the symbol, missing columns in the symbols can be 
minimalized if not completely eliminated. 

 

Figure 5. Symbols with the same data (“0242FZ5CGW0D”), encoded in 
a 7 row by 50 column pattern using masks 0-3 (top to bottom) showing 
how the masks can eliminate blank columns (masks 0 and 4). The scores 
for each mask are -106, 137, 325 and -15 respectively and the threshold 
is 175 

2.3. Placing the Dots 
The DotCode specification indicates that a properly 

printed symbol must be configured such that the sum of 
the rows and columns result in an odd number. This 
allows for an unambiguous determination as to whether 
the symbol is encoded starting at the upper left corner or 
the lower left corner [1]. If the number of rows are even 
then data is encoded in the columns, moving from left to 
right and top to bottom. If the number of rows are odd 
then the data is encoded moving from left to right starting 
at the bottom row and progressing to the top row. Figure 6 
shows the two encoding patterns. 

2.4. Unlit Edge Issue 
Due to the encodation pattern shown above in Figure 6, 

it is possible to generate DotCode symbols that have 
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missing edges; where all dots are in the “off” state. In 
instances where the missing edge is the “second edge” 
(dots 4, 8 and 12 in Figure 6), the current decode logic 
may be able to compensate for this. However, when the 
“first edge” (dots 1 and 2 in Figure 6) where the mask is 
identified or when multiple edges are missing, the bar 
code scanner’s ability to determine how to decode the 
information becomes sufficiently compromised, resulting 
in an inability to decode the information. Figure 7, shows 
such an example. 

 

Figure 6. Two symbols showing the sequence (the numbered circles) 
and direction in which the dots are encoded. The left pattern is 7 rows x 6 
columns and the right image is 6 rows by 7 columns 

 

Figure 7. (Color online) Symbols with the same data (“038451”), 
encoded in a 10 row by 13 column pattern using masks 0 (left) and 3 
(right) showing how a symbol could inadvertently be generated that is 
missing multiple edges. The light red boarders indicate the edges of the 
grid 

It is due to this potential that it was proposed that all 
four corners always be asserted (the dots are always black) 
whenever any of the edges were unlit. The result would be 
that, in Figure 6, dots 1, 2, 4, 12, 14 and 13 would always 
be “on” (having a binary value of one). In these instances 
this would result in additional dots in the stream, resulting 
in the triggering of the RSEC logic during the decode 
process; potentially resulting in an increase to the overall 
decode time.   

3. Methodology 

To determine the impacts of various levels of intentional 
errors on symbols though the illumination of all four 
corners, a high-speed conveyor simulator was developed 
and scanners were positioned above the path as shown in 
Figure 8. The simulator has 30 stations on which 1” x 4” 
labels could be attached. The system is capable of speeds 
of up to 300 feet per minute for a resulting maximum  
“box” rate of 30 boxes per second. The bar code scanners 
were configured to only scan DotCode symbols and had 
their window of interest (the portion of the image that was 
processed) limited such that only the symbols, and not the 
entire label, were processed as a way help improve the 
processing time required. The reason for this was that at 
30 scans per second, the scanner only had 33 milliseconds 

in which to acquire, decode and fix scanned bar codes. It 
should be noted at this time that the scanners used were 
configured to the best of the author’s abilities but due to 
budgetary limitations, the proper external strobe lighting 
the application called for was not available. As a result, 
the performance of the two scanners used may not be truly 
representative of the equipment’s performance potential. 

 

Figure 8. (Color online) Testing rig. Visit vimeo.com/229003022 for 
video footage of the system 

The scanners were configured to transmit the bar code 
data and the scanner’s internally reported decode time, a 
diagnostic tool that helps the hardware integrator to 
determine if the scanner is optimally aligned. Data 
collection was accomplished via the scanner’s serial ports 
and physical serial ports (not USB to serial adapters) on 
the data collection computers. The free software package 
RealTerm (sourceforge.net/projects/realterm/) was used to 
log the data. The system originally used custom data 
logging software. However due to inefficiencies in the 
program, data was being corrupted or lost, resulting in the 
decision to switch to RealTerm.  

Twenty-nine unique bar code symbols were generated 
in Seagull Scientific’s Bartender Designer 2016 R3 
software. For instances where intentional damage was 
being introduced, the symbols were exported out of 
Bartender and imported into Adobe Photoshop where the 
necessary additions and erasures were generated (see 
Figure 9). The images where then printed on a color laser 
printer and were attached to the test rig. A symbol 
encoding the word “UOMDIVIDER0F” was placed in the 
30th test position to provide the researchers with an index 
point in the data stream. Efforts were made to ensure the 
labels were placed in the same place each time, but due to 
the manual nature of the process, the window of interest 
for each scanner was also updated to help ensure as 
consistent a decode time as was possible. 

 

Figure 9. (Color online) Sample symbol showing one additional dot 
(dark blue dot) and one erasure (red dot) within the first codeword. The 
use of red dots was because it was determined the scanners filtered out 
red, which resulted in the red dots appearing as white to the scanners 
while allowing the researcher to still see the deleted dot 

As previously discussed, the illumination of the corner 
dots was the prime consideration in symbol selection. So 
as to provide additional data points, symbols with one, 
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two and three errors to the encodation pattern were 
included. Table 1, shows the various combinations of 
errors introduced to the symbols for testing. 

Table 1. Damage test matrix. “Add” indicates that a dot was added 
and “Del” indicates that a dot was removed 

 Codeword Damage 

 1st 2nd 3rd 

Run Del Add Del Add Del Add 

1 Baseline  - No Damage 

2 X      
3  X     
4 X X     
5 X X  X   
6 X X X X  X 

7 X X X X X X 

 
The simulator was run at 120 feet per minute to ensure 

sufficient decode time and nine hundred scans of each symbol 
for each of the two scanners used was undertaken. The data 
was captured and processed via Minitab. After completing 
the initial data run, which was used for an initial data analysis, 
additional runs were undertaken to allow for a fuller 
descriptive data analysis resulting in an overall data set 
that exceeded 12.6 million scans. This additional data was 
left out of the initial analysis so as to prevent the overall 
power of the analysis from becoming too great [10,11].  

4. Results 

An analysis of variance for the initial tests showed that 
there were statistically significant differences for the 
scanned bar code, F(28, 12024) = 4.30, p = 0.00, the level 
of damage, F(6,12024) = 29.36, p = 0.00, and the reader, 
F(1, 12024) = 722.46, p = 0.00, with no statistically 
significant grouping. 

 

Figure 10. (Color online) Average scanner decode times for each 
damage run. Decode times are in milliseconds  

Upon completion of the initial data runs, the extended 
data runs were executed and the overall aggregate results 
were compiled. As can be seen in Figure 10, a dip in the 
decode time for run “2” on scanner “A” occurred. The 
cause of this is not known, although this dip occurred  
after repeated attempts at ensuring that the scanner was 
correctly adjusted for both runs “1” and “2”. Additionally, 

the generally upward trend noticed for reader “A” was a 
repeatable occurrence. Discussions with the manufacturer 
were not able to resolve the cause of this trend, as they 
believed that it shouldn’t exist. However, since the results 
were repeatable, it has been assumed that the cause was 
either due to a) optimization routines within the reader 
that were not being disclosed or b) that there were slight 
imperfections in the setup and configuration of the reader 
(e.g. focus point, alignment, etc.) that were somehow 
impacting the performance of the reader when reading that 
specific set of symbols. 

In addition to the odd dip in Figure 10, Figure 11, and 
Table 2, show that the consistency of performance of 
reader “B” was much better than reader “A”. Once again, 
it was assumed that much of the inconsistency was due to 
the configuration and setup of the test rig and was not 
indicative of the scanner’s true performance potential. 
Table 2, shows the overall descriptive statistics for the 
larger data sets. The variations in total bar codes scanned 
were due a limited time frame for which the bar code 
scanners could be used as they were needed for use in an 
academic class. As the smallest data run was for over 440 
thousand scans, it was felt that the additional data points 
would not provide a significant difference in the results.   

 

Figure 11. (Color online) Average decode by scanner and symbol for 
each damage run. Decode times are in milliseconds 

From a practical viewpoint, the existence of a statistical 
significance between the various error levels can most 
likely be ignored. The lack of any statistically significant 
grouping during the initial post hoc analysis further 
strengthens this argument. As can be seen in the overall 
descriptive statistics, scanner “A” shows a 4.1 millisecond 
average range and scanner “B” a mere 1.2 millisecond 
average range. In either case even at speeds of 30 scans 
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per second, the scanner has 33 milliseconds with which to 
find and decode a bar code. At 18.1 milliseconds, the extra 

4.1 milliseconds would not necessarily prevent an undue 
number of reads to fail due to insufficient time. 

Table 2. Overall descriptive statistics results by scanner. 

Scanner A 
Run 1 2 3 4 5 6 7 
Mean 16.6 14.0 17.3 17.8 17.8 16.4 18.1 
Median 12 13 16 16 16 16 16 
Mode 12 11 14 14 14 16 14 
Std Dev 10.8 6.4 8.8 9.4 8.4 6.7 8.7 
Kurtosis 11.2 28.8 25.1 22.4 20.2 41.7 18.8 
Skewness 3.2 4.9 4.9 4.5 4.2 6.0 4.0 
Min Time 10 9 11 13 12 12 12 
Max Time 75 71 82 82 82 82 84 
Total Reads 1,000,003 1,018,411 1,000,001 834,011 1,000,002 443,444 833,994 

Scanner B 
Run 1 2 3 4 5 6 7 
Mean 18.1 18.7 18.3 17.8 18.4 18.5 18.9 
Median 18 19 18 18 18 18 18 
Mode 18 19 18 18 18 18 18 
Std Dev 0.5 1.9 0.8 3.5 0.9 1.0 1.8 
Kurtosis 69.7 72.1 216.7 20.9 128.0 37.6 31.8 
Skewness -1.4 -6.4 -8.0 -4.6 -4.0 0.5 -2.3 
Min Time 10 9 11 13 12 12 12 
Max Time 75 71 82 82 82 82 84 
Total Reads 1,000,003 1,018,411 1,000,001 834,011 1,000,002 443,444 833,994 

 

5. Conclusion 

While it may be assumed by bar code experts that the 
intentional inclusion of RSEC errors will have at most a 
marginal impact on overall performance, this study has 
shown that from an applied point of view, the impact of 
intentionally added errors to the DotCode symbology will 
result in, on average an extra 4.1 milliseconds to the 
decode time. And while the inclusion of intentional errors 
into a bar code symbol is never ideal, the added security of 
ensuring that a symbol is not inadvertently generated 
without a sufficient structure that ensures decoding can be 
easily argued. However, this conclusion needs to be 
embraced with caution as the one thing that this study did 
not attempt to address is the impact on decode time of 
errors in instances where a significant portion of the  
error correction code words were consumed. In instances 
where other damage to the dot code stream has occurred 
naturally (e.g. damaged labels, partially covered bar codes, 
etc.), the addition of intentionally induced errors could 
potentially result in significantly higher decode times or 
failed decodes. 
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