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Abstract  Traffic shaping is a computer network traffic management technique which delays some packets to 
make the traffic compliant with the desired traffic profile. Traffic policing is the process of monitoring network 
traffic for compliance with a traffic contract and dropping the excess traffic. Both traffic shaping and policing use 
two popular methods, known as leaky bucket and token bucket. The paper proposes timed Petri net models of both 
methods and uses these models to show the effects of traffic shaping and policing on the performance of very simple 
networks. 
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1. Introduction 

Traffic shaping is a computer network traffic management 
technique which delays some packets to make the traffic 
compliant with the desired traffic profile [1]. Traffic 
shaping is used to improve network latency and/or 
increase usable bandwidth for some classes of packets by 
delaying packets of other classes [2]. 

If a communication link is used to the point when there 
is a significant level of congestion, latency can rise 
substantially. Traffic shaping can be used to prevent this 
from occurring and keep latency in check. Traffic shaping 
provides a means to control the volume of traffic sent into 
a network in a specified period of time, or to control the 
maximum rate at which traffic is sent. This control can be 
accomplished in many different ways, however traffic 
shaping is typically achieved by delaying packets. 

Traffic shaping can be (formally) regarded as a 
transformation of the probability distribution function of 
the inter-arrival times of packets to be transmitted over a 
communication channel. The effect of traffic shaping can 
be illustrated by a simple example of a single-channel 
queueing station with exponentially distributed service 
times. If the interarrival times are also exponentially 
distributed (i.e., the model is the popular M/M/1 queue 
[3,4]), the average packet waiting time, wT , is: 

 
(1 )wT

s
ρ
ρ
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where s  is the service rate and ρ  is the traffic intensity. 

If, in this model, the exponentially distributed inter-arrival 
times are replaced by deterministic arrivals (i.e., the model 
becomes D/M/1), the  average waiting time is: 
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and, for the same values of ρ  and ,s  it is two times 
smaller than in the M/M/1 case. 

This simple example may suggest that the waiting times 
of packets transmitted over a communication network can 
be reduced by transforming the probability distribution 
function of their inter-arrival times. Traffic shaping 
techniques are used for this purpose. However, traffic 
shaping may introduce significant additional traffic delays, 
so its (potential) advantages can easily be lost. 

Traffic shaping is often used at network edges to 
control traffic entering the network, but it can also be used 
at the nodes of the network. 

Traffic shaping is similar, in many aspects, to traffic 
policing. The main difference is in dealing with packets 
which do not conform to the required traffic profile. In 
traffic shaping, such packets are usually delayed until they 
satisfy traffic requirements while in traffic policing they 
are simply dropped (or marked to be dropped later on). 

A recent study [5] shows that a significant part of 
internet traffic is policed, and that more than 20% of the 
policed traffic is lost due to packets dropping, reducing the 
effective bandwidth of internet. A better traffic management 
scheme would use the bandwidth wasted by the lost traffic. 

In the following sections, two popular traffic shaping 
methods, known as leaky bucket and token bucket, are 
discussed in greater detail and are represented as timed 
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Petri net models. These models are then used to show the 
effects of traffic shaping and traffic policing on the 
performance of simple examples. 

Section 2 recalls basic concepts of Petri nets and timed 
Petri nets. Leaky bucket scheduling is discussed in Section 
3 and token bucket scheduling in Section 4. Section 5 
shows how traffic policing can be used to provide quality 
of service in priority queueing. Section 6 concludes the 
paper. 

2. Timed Petri Nets 

Petri nets are formal models of systems that exhibit 
parallel and concurrent activities [6,7]. In Petri nets, these 
activities are represented by tokens which can move 
within a (static) graph-like structure of the net. More 
formally, a marked (weighted inhibitor) place/transition 
Petri net   is defined as 0( , ),m=   where the 
structure   is a bipartite directed weighted graph, 

( , , , )P T A w= , with two types of vertices, a set of 
places P  and a set of transitions T , a set of directed arcs 
A  connecting places with transitions and transitions with 

places, ,A T P P T⊆ × ∪ ×  and a weight function 
: {0,1,...}w A →  which describes the multiplicity of arcs 

with the value 0 indicating inhibitor arcs; the initial 
marking function 0m  assigns nonnegative numbers of 
tokens to places of the net, 0 : {0,1,...}m P → . Marked 
nets can also be defined as 0( , , , , )P T A w m= . 

A place is shared if it is connected to more than one 
transition. A shared place p  is free-choice if the sets of 
places connected by directed arcs to all transitions sharing 
p  are identical and the connecting arcs have the same 

weights. For each free-choice place, either all transitions 
sharing it are enabled by a marking m  or all are disabled 
by m . It is assumed that a transition to occur in each  
free-choice class is chosen in a random way, and this 
choice is independent from other free-choice classes,  
so it can be described by a probability associated with a 
transition. 

In timed nets [8], occurrence times are associated with 
transitions, and transition occurrences are real-time events, 
i.e., tokens are removed from input places at the beginning 
of the occurrence period, and they are deposited to the 
output places at the end of this period. All occurrences of 
enabled transitions are initiated in the same instants of 
time in which the transitions become enabled (although 
some enabled transitions cannot initiate their occurrences). 
If, during the occurrence period of a transition, the 
transition becomes enabled again, a new, independent 
occurrence can be initiated, which will overlap with the 
other occurrence(s). There is no limit on the number  
of simultaneous occurrences of the same transition 
(sometimes this is called infinite occurrence semantics). 
Similarly, if a transition is enabled “several times” (i.e., it 
remains enabled after initiating an occurrence), it may 
start several independent occurrences in the same time 
instant. 

More formally, a timed Petri net is a triple, 
( , , )c f=  , where   is a marked net, c  is a choice 

function which assigns probabilities to transitions in  
free-choice classes or relative frequencies of occurrences 
for conflicting transitions, : [0,1],c T →  and f  is a 
timing function which assigns an (average) occurrence 
time to each transition of the net, :f T +→ R , where +R  
is the set of nonnegative real numbers. 

The occurrence times of transitions can be either 
deterministic or stochastic (i.e., described by some 
probability distribution function); in the first case, the 
corresponding timed nets are referred to as D-timed  
nets [9], in the second, for the (negative) exponential 
distribution of firing times, the nets are called M-timed 
nets (Markovian nets) [10]. In both cases, the concepts of 
state and state transitions have been formally defined  
and used in the derivation of different performance 
characteristics of the model. In simulation applications, 
other distributions can also be used, for example,  
the uniform distribution (U-timed nets) is sometimes  
a convenient option. In timed Petri nets different 
distributions can be associated with different transitions in 
the same model providing flexibility that is used in 
simulation examples that follow. 

In timed nets, the occurrence times of some transitions 
may be equal to zero, which means that the occurrences 
are instantaneous; all such transitions are called immediate 
(while the others are called timed). Since the immediate 
transitions have no tangible effects on the (timed) 
behavior of the model, it is convenient to `split' the set of 
transitions into two parts, the set of immediate and the  
set of timed transitions, and to first perform all 
occurrences of the (enabled) immediate transitions, and 
then (still in the same time instant), when no more 
immediate transitions are enabled, to start the occurrences 
of (enabled) timed transitions. It should be noted that such 
a convention effectively introduces the priority of 
immediate transitions over the timed ones, so the conflicts 
of immediate and timed transitions are not allowed in 
timed nets. Detailed characterization of the behavior or 
timed nets with immediate and timed transitions is given 
in [8]. 

3. Leaky Bucket Scheme 

The leaky bucket algorithm is used in packet-switched 
networks to check that data transmissions (in the form of 
packets) conform to defined limits on bandwidth and 
burstiness. It can also be used as a scheduling algorithm  
to determine the timing of transmissions that will  
comply with the limits set for the bandwidth and 
burstiness [11]. 

The leaky bucket scheme can be regarded as a simple 
finite capacity queueing station [12], as shown in Figure 1, 
with the capacity of the queue representing the capacity  
of the bucket, and with (deterministic) service times 
corresponding to the “leaking time” (i.e., time of forming 
a single drop). 

 

Figure 1. Leaky bucket model 
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The scheme limits the rate of outgoing packets by the 
“leaking rate" and removes the burstiness from the 
arriving traffic - the outgoing packets are spaced by at 
least the “leaking time''. This shaping of the traffic is 
performed at the cost of a delay introduced by the leaky 
bucket, and this delay is a function of the “leaking rate”, 
the arrival rate of packets, a , as well as the interarrival 
times of packets. 

A Petri net model of leaky bucket is shown in Figure 2, 
in which places xp  and yp  represent the entry and the exit 

of the scheme, place bp  models the bucket, transition st  
with place sp  model the leaking process (one drop at a 
time); st  has a deterministic occurrence time sT  associated 
with it. Place cp  with its initial marking K  determines 
the capacity of the bucket, and transitions at  and dt  either 
enter an incoming packet into the bucket or drop the 
packet if the bucket is full, i.e., if place cp  is unmarked. 

 

Figure 2. Petri net model of the leaky bucket scheme 

Initially, place cp  is marked, so the incoming packets 
are forwarded to the bucket bp  and the leaking begins. 
After some time, if the bucket is full (and cp  is empty), 
the incoming packets cannot be stored in the bucket, so 
the occurrences of dt  remove the packets from the model. 

The effects of leaky bucket scheduling is shown by 
comparing the performance of a simple queueing system 
with leaky bucket with the same system without the leaky 
bucket scheme. In such comparisons it is assumed that the 
bucket capacity is infinite, so no packets are dropped. 
Leaky bucket with infinite capacity can be simplified as 
shown in Figure 3. 

 

Figure 3. Petri net model of leaky bucket with infinite capacity 

A simple queueing system, composed of bursty source 
and three consecutive service stations, as shown in  
Figure 4, is used as an illustration of how the leaky bucket 
scheme can affect the performance of a queueing system. 
All service times in Figure 4 are uniformly distributed 
between 0.5 and 1.5 time units. 

 

Figure 4. Queueing example 

The pattern of the bursty source is 5 arrivals with  
0.1 time units interarrival times followed by a single 
arrival after 6.1 time units (so the arrival rate is equal  
to 1.1). A more general Petri net model of bursty arrivals 
is shown in Figure 5 (for this example, 1 5K =  and 

2 1K = ). 

 

Figure 5. Petri net model of a bursty source 1 1 2 2* *K T K T+  

Timed transitions 01t  and 02t  generate the first and  
the second part of the bursty traffic, respectively. Places 

12p  and 21p  are the counters for section 1 and 2, 
respectively. If place 12p  is marked, each occurrence of 
transition 01t  reduces the contents of 12p  by one.  
When 12p  becomes unmarked, the token from 01p  is 
moved to 02p  by an occurrence of 12 ,t  and 2K  tokens 
are set in 21,p  after which the occurrences of 02t  begin. 
When 21p  becomes unmarked, the occurrence of 21t  
moves the token from 02p  to 01p and also resets 12p  to 

1K . 
For traffic intensity equal to 0.9, the average waiting 

times (obtained by simulation of the model shown in 
Figure 4) are: 

 
stage average waiting time 

1 24.805 
2 4.009 
3 3.381 

total 32.195 
 
This result is compared with a modified system, in 

which the leaky bucket is used at the front of the sequence 
of service stations, as shown in Figure 6. 

This result is compared with a modified system, in 
which the leaky bucket is used at the front of the sequence 
of service stations, as shown in Figure 6. 

 

Figure 6. Queueing example with leaky bucket 

For the leaking time equal to 0.30 time units, the 
waiting times are (stage “0” is the leaky bucket): 
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stage waiting time 
0 0.681 
1 21.777 
2 3.739 
3 2.415 

total 28.612 
 
When the traffic intensity approaches 1, the differences 

are more significant (as the queueing becomes more 
intensive). For traffic intensity equal to 0.95, the average 
waiting times in the original system (Figure 4) are: 

 
stage waiting time 

1 69.933 
2 8.568 
3 6.926 

total 85.427 
 

while the waiting times in the modified system (Figure 6) 
are: 
 

stage waiting time 
0 1.954 
1 33.229 
2 5.052 
3 4.921 

total 45.156 

4. Token Bucket Scheme 

Token bucket algorithm is based on an analogy of a 
fixed capacity bucket, into which tokens are added at a 
fixed rate until the bucket is full. Each token usually 
represents a packet or a number of bytes in the packet (so 
several tokens may be needed to match a packet). When a 
packet is to be processed, the bucket is inspected if it 
contains the number of tokens matching the packet, and if 
this is the case, the tokens are removed from the bucket 
and the packet is sent forward. If the number of available 
tokens is insufficient, the packet can wait until more 
tokens are added to the bucket, or the packet can be 
dropped, or it is sent forward but is marked as being 
nonconformant, possibly to be dropped subsequently if the 
network is overloaded [13]. 

A conforming flow contains thus traffic with an average 
rate up to the rate at which tokens are added to the bucket. 

 

Figure 7. Petri net model of token bucket 

Petri net model of the token bucket scheme, for the case 
when each packet is matched by a single token, and 
packets which do not have matching tokens are not 
dropped but are delayed, is shown in Figure 7. 

Place bp  is the bucket of tokens. It bp  is marked, an 
arriving packet is forwarded by transition bt  moving one 
token from bp  to cp ; cp  is complementary to bp  and 
indicates the number of tokens missing in the bucket. 
Transition st  with deterministic occurrence time sT  
generates tokens with rate 1/ sT . If the bucket is not full 
(i.e., cp  is marked), the generated token (in ap ) is moved 
to the bucket bp  by transition at . If the bucket is full, 
transition dt  discards the generated token. 

The capacity of the bucket controls the burstiness of the 
shaped traffic. If this capacity is equal to K , at most K  
arriving packets are forwarded without additional delay 
while subsequent packages are affected by the token 
generation rate (1/ sT ). 

Token bucket shown in Figure 7 controls the number of 
packets but does not take the length of packets into 
account. This can be illustrated by the following example. 
Let the traffic be composed of two types of packets, 
packets of length 1 and packets of length 3. Let α  denote 
the fraction of the total number of packets which are 
packets of length 3 (0 α≤ ≤  1). If the length of packets is 
not taken into account, the traffic can be controlled only at 
the average level of packet length. However, if this 
average length changes, the traffic intensity can change 
quite significantly. 

Figure 8 shows channel utilization as a function of α , 
the fraction of the total number of packets which are 
packets of length 3. For traffic control that does not take 
packet length into account, channel utilization changes (in 
Figure 8) from 0.25 (for 0α = , i.e., traffic composed 
exclusively of packets of length 1) to 0.75 (for 1α = , i.e., 
traffic composed exclusively of packets of length 3). It is 
rather straightforward to observe that with the same arrival 
rate of packets, the bandwidth required for 0α =  is three 
times smaller than the bandwidth required for 1α = .  

It should also be observed that since the leaky bucket 
scheme does not take packet length into account, the 
effects of packet length on bandwidth  requirements for 
token bucket without packet length control are very 
similar to those for leaky bucket. 

 

Figure 8. Channel utilization as a function of α 
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Figure 9. Petri net model for token bucket with packet length control 

Packet length can be taken into account by assigning 
each token to a number of bytes in the forwarded packet 
and removing (from the bucket) the number of tokens 
representing the length of current packet (smaller number 
of tokens for shorter packets and larger numbers of tokens 
for longer packets). Figure 9 shows the token bucket 
scheme for two types of packets, one of length 1 and the 
other of length 3. These two types of packets enter the 
scheme through input places 1xp  and 3xp , respectively. 
Each packet of length 1 is forwarded if there is at least 1 
token in the bucket (otherwise it waits in 1xp ); each 
packet of length 3 needs at least 3 tokens in the bucket to 
be forwarded (arcs 3( , )b bp t  and 3( , )b ct p  with weights 3). 
If there is insufficient number of tokens in the bucket, the 
packet is delayed (in 1xp  or 3xp ). 

Figure 8 also shows channel utilization as a function of 
α  for the case when packet length is taken into account. 
This utilization is practically constant at the level of 0.5. 
This level is determined by the rate of token generation in 
Figure 9 (i.e., by the occurrence time of transition st ). 

5. Traffic Policing 

Traffic policing, i.e., enforcing conformance of the 
traffic to some requirements, restricts the flow of packets 
by either dropping the nonconformant packets or marking 
them as nonconformant so they can be dropped later. This 
can be illustrated by adding the traffic shaping schemes to 
the (strict) priority scheduling [14], with its well known 
possibility of blocking lower priority traffic by intensive 
traffic of higher priorities. 

Figure 10 shows a simple priority queueing with two 
classes of traffic. 

 

Figure 10. Priority queueing 

Class 1 packets take priority in accessing the transmission 
channel (i.e., the server in Figure 10) over class 2 packets, 
which means that class 2 packets can be transmitted only 
when there are no class 1 packets waiting for transmission. 

Petri net model for priority queueing is shown in  
Figure 11. 

 

Figure 11. Petri net model of a priority queueing 

In Figure 11, transition 01t  with place 01p  generate 
class 1 packets, and transition 02t  with place 02p  class 2 
packets. If the occurrence times of 01t  and 02t  are 
exponentially distributed, the packets have exponentially 
distributed inter-arrival times; if the occurrence times are 
constant, the arrivals are deterministic, and so on. 
Transitions 1t  and 2t  represent the shared communication 
channel (the server in Figure 10) and place 1p  (with a 
single token) guarantees that only one packet can be 
transmitted at a time. The inhibitor arc 1 2( , )p t  provides 
the priority of class 1 over class 2, i.e., packets from 2p  
can be transmitted only when 1p  is unmarked (i.e., there 
are no class 1 packets waiting for transmission). 

The behavior of (strict) priority scheduling is illustrated 
in Figure 12 by showing the utilization of the shared 
channel by class 1 and class 2 packets as functions of  
class 1 traffic intensity, 1ρ , with fixed traffic intensity of 
class 2, 2 0.4ρ = . 

 

Figure 12. Channel utilization for (strict) priority queueing 

As 1ρ  increases, the traffic in class 2 is not affected 
until 1 0.6ρ = , when the channel becomes fully utilized 
( 1 2 1ρ ρ+ = ). Further increases in channel utilization by 
class 1 can be only achieved by blocking traffic in class 2; 
Figure 12 shows that class 2 traffic is gradually reduced to 
zero as 1ρ  increases. 
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It should be observed that in more realistic examples, 
with many classes of traffic, the blocking effects are more 
complex as they correspond to different interactions of 
traffic in classes of higher priorities. 

The blocking of traffic can be restricted by using traffic 
shaping schemes. Figure 13 shows a modification of 
priority queueing in which leaky bucket is used to restrict 
class 1 traffic, and to prevent excessive blocking of class 2 
traffic. The level of restriction is determined by the 
leaking time of the scheme used. 

 

Figure 13. Priority queueing with leaky bucket 

Petri net model of this modified priority queueing 
(Figure 13) is obtained by replacing place 1p  in Figure 11 
by the model shown in Figure 2. 

The effect of traffic policing by leaky bucket is shown 
in Figure 14 (which should be compared with Figure 12). 
Traffic restriction introduced by the leaky bucket is set at 
the level of 80%, i.e., traffic intensity for class 1 cannot 
exceed 0.8 with the remaining 20% of channel bandwidth 
“reserved'' for class 2 traffic. 

 

Figure 14. Channel utilization for priority queueing with leaky bucket 

 

Figure 15. The fraction of packets dropped as a function of traffic 
intensity 1ρ  

The restriction of the traffic introduced by leaky bucket 
results in dropping the packets which cannot be forwarded 
for transmission. Figure 15 shows the fraction of the total 
number of arriving packets that are dropped because they 
do not conform to the assumed traffic profile. As the 
traffic in class 2 is restricted from the level of 0.4 to 0.2 
(by 1ρ  changing from 0.6 to 0.8), the fraction of packets 
dropped increases from 0 to 0.5 (i.e., 50%). Similarly, as 
channel utilization for class 1 cannot exceed 0.8, for 

1 0.8ρ >  all packets which cannot be transmitted are 
dropped. 

It should be noted that practically the same traffic 
restriction obtained by using leaky bucket (Figure 14) can 
be obtained by using token bucket. 

6. Concluding Remarks 

Traffic shaping and policing can be done at the source, 
prior to entrance into the network, or within the networks 
[1]. If it is done at the source, it means a kind of  
self-regulation in order to ensure conformance to the 
traffic contract. Such conformance is desirable to 
minimize the amount of traffic disregarded at the network 
nodes. 

The idea of traffic control within the network is to 
smooth the traffic and to reduce the queues and hence to 
incur shorter queueing delays and less delay jitter [15]. 
Since traffic shaping is done by buffering, some queueing 
delay is added during this process, but the smoothed 
traffic usually quickly compensates this additional delay. 
Overall, network performance is improved by smooth 
traffic [2]. 

Intelligent traffic control schemes can provide a particular 
quality of service (measured in jitter, packet loss, and 
latency) for an application or a user while still allowing 
other traffic to use all remaining bandwidth. 

Traffic shaping is especially effective in busy networks, 
i.e., when the network traffic is close to the network 
capacity. 

Finally, it should be noted, that the discussed methods 
are just basic elements of complex computer networks and 
that the behavior of real systems is very dynamic and 
usually difficult to predict. Therefore good understanding 
of the basic elements is needed to use the networks in an 
efficient and predictable way. 
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