
Journal of Computer Sciences and Applications, 2018, Vol. 6, No. 2, 75-81
Available online at http://pubs.sciepub.com/jcsa/6/2/4
©Science and Education Publishing
DOI:10.12691/jcsa-6-2-4

Modeling Traffic Shaping and Traffic Policing
in Packet-Switched Networks

Wlodek M. Zuberek1,*, Dariusz Strzeciwilk2

1Department of Computer Science, Memorial University, St. John’s, Canada
2Department of Applied Informatics, University of Life Sciences, Warsaw, Poland

*Corresponding author: wzuberek@mun.ca

Received August 26, 2018; Revised October 01, 2018; Accepted October 26, 2018

Abstract Traffic shaping is a computer network traffic management technique which delays some packets to
make the traffic compliant with the desired traffic profile. Traffic policing is the process of monitoring network
traffic for compliance with a traffic contract and dropping the excess traffic. Both traffic shaping and policing use
two popular methods, known as leaky bucket and token bucket. The paper proposes timed Petri net models of both
methods and uses these models to show the effects of traffic shaping and policing on the performance of very simple
networks.

Keywords: traffic shaping, traffic policing, packet-switched networks, leaky bucket algorithm, token bucket
algorithm, timed Petri nets, performance analysis

Cite This Article: Wlodek M. Zuberek, and Dariusz Strzeciwilk, “Modeling Traffic Shaping and Traffic
Policing in Packet-Switched Networks.” Journal of Computer Sciences and Applications, vol. 6, no. 2 (2018):
75-81. doi: 10.12691/jcsa-6-2-4.

1. Introduction

Traffic shaping is a computer network traffic management
technique which delays some packets to make the traffic
compliant with the desired traffic profile [1]. Traffic
shaping is used to improve network latency and/or
increase usable bandwidth for some classes of packets by
delaying packets of other classes [2].

If a communication link is used to the point when there
is a significant level of congestion, latency can rise
substantially. Traffic shaping can be used to prevent this
from occurring and keep latency in check. Traffic shaping
provides a means to control the volume of traffic sent into
a network in a specified period of time, or to control the
maximum rate at which traffic is sent. This control can be
accomplished in many different ways, however traffic
shaping is typically achieved by delaying packets.

Traffic shaping can be (formally) regarded as a
transformation of the probability distribution function of
the inter-arrival times of packets to be transmitted over a
communication channel. The effect of traffic shaping can
be illustrated by a simple example of a single-channel
queueing station with exponentially distributed service
times. If the interarrival times are also exponentially
distributed (i.e., the model is the popular M/M/1 queue
[3,4]), the average packet waiting time, wT , is:

(1)wT

s
ρ
ρ

=
−

where s is the service rate and ρ is the traffic intensity.

If, in this model, the exponentially distributed inter-arrival
times are replaced by deterministic arrivals (i.e., the model
becomes D/M/1), the average waiting time is:

2 (1)wT

s
ρ
ρ

=
−

and, for the same values of ρ and ,s it is two times
smaller than in the M/M/1 case.

This simple example may suggest that the waiting times
of packets transmitted over a communication network can
be reduced by transforming the probability distribution
function of their inter-arrival times. Traffic shaping
techniques are used for this purpose. However, traffic
shaping may introduce significant additional traffic delays,
so its (potential) advantages can easily be lost.

Traffic shaping is often used at network edges to
control traffic entering the network, but it can also be used
at the nodes of the network.

Traffic shaping is similar, in many aspects, to traffic
policing. The main difference is in dealing with packets
which do not conform to the required traffic profile. In
traffic shaping, such packets are usually delayed until they
satisfy traffic requirements while in traffic policing they
are simply dropped (or marked to be dropped later on).

A recent study [5] shows that a significant part of
internet traffic is policed, and that more than 20% of the
policed traffic is lost due to packets dropping, reducing the
effective bandwidth of internet. A better traffic management
scheme would use the bandwidth wasted by the lost traffic.

In the following sections, two popular traffic shaping
methods, known as leaky bucket and token bucket, are
discussed in greater detail and are represented as timed

 Journal of Computer Sciences and Applications 76

Petri net models. These models are then used to show the
effects of traffic shaping and traffic policing on the
performance of simple examples.

Section 2 recalls basic concepts of Petri nets and timed
Petri nets. Leaky bucket scheduling is discussed in Section
3 and token bucket scheduling in Section 4. Section 5
shows how traffic policing can be used to provide quality
of service in priority queueing. Section 6 concludes the
paper.

2. Timed Petri Nets

Petri nets are formal models of systems that exhibit
parallel and concurrent activities [6,7]. In Petri nets, these
activities are represented by tokens which can move
within a (static) graph-like structure of the net. More
formally, a marked (weighted inhibitor) place/transition
Petri net is defined as 0(,),m= where the
structure is a bipartite directed weighted graph,

(, , ,)P T A w= , with two types of vertices, a set of
places P and a set of transitions T , a set of directed arcs
A connecting places with transitions and transitions with

places, ,A T P P T⊆ × ∪ × and a weight function
: {0,1,...}w A → which describes the multiplicity of arcs

with the value 0 indicating inhibitor arcs; the initial
marking function 0m assigns nonnegative numbers of
tokens to places of the net, 0 : {0,1,...}m P → . Marked
nets can also be defined as 0(, , , ,)P T A w m= .

A place is shared if it is connected to more than one
transition. A shared place p is free-choice if the sets of
places connected by directed arcs to all transitions sharing
p are identical and the connecting arcs have the same

weights. For each free-choice place, either all transitions
sharing it are enabled by a marking m or all are disabled
by m . It is assumed that a transition to occur in each
free-choice class is chosen in a random way, and this
choice is independent from other free-choice classes,
so it can be described by a probability associated with a
transition.

In timed nets [8], occurrence times are associated with
transitions, and transition occurrences are real-time events,
i.e., tokens are removed from input places at the beginning
of the occurrence period, and they are deposited to the
output places at the end of this period. All occurrences of
enabled transitions are initiated in the same instants of
time in which the transitions become enabled (although
some enabled transitions cannot initiate their occurrences).
If, during the occurrence period of a transition, the
transition becomes enabled again, a new, independent
occurrence can be initiated, which will overlap with the
other occurrence(s). There is no limit on the number
of simultaneous occurrences of the same transition
(sometimes this is called infinite occurrence semantics).
Similarly, if a transition is enabled “several times” (i.e., it
remains enabled after initiating an occurrence), it may
start several independent occurrences in the same time
instant.

More formally, a timed Petri net is a triple,
(, ,)c f= , where is a marked net, c is a choice

function which assigns probabilities to transitions in
free-choice classes or relative frequencies of occurrences
for conflicting transitions, : [0,1],c T → and f is a
timing function which assigns an (average) occurrence
time to each transition of the net, :f T +→ R , where +R
is the set of nonnegative real numbers.

The occurrence times of transitions can be either
deterministic or stochastic (i.e., described by some
probability distribution function); in the first case, the
corresponding timed nets are referred to as D-timed
nets [9], in the second, for the (negative) exponential
distribution of firing times, the nets are called M-timed
nets (Markovian nets) [10]. In both cases, the concepts of
state and state transitions have been formally defined
and used in the derivation of different performance
characteristics of the model. In simulation applications,
other distributions can also be used, for example,
the uniform distribution (U-timed nets) is sometimes
a convenient option. In timed Petri nets different
distributions can be associated with different transitions in
the same model providing flexibility that is used in
simulation examples that follow.

In timed nets, the occurrence times of some transitions
may be equal to zero, which means that the occurrences
are instantaneous; all such transitions are called immediate
(while the others are called timed). Since the immediate
transitions have no tangible effects on the (timed)
behavior of the model, it is convenient to `split' the set of
transitions into two parts, the set of immediate and the
set of timed transitions, and to first perform all
occurrences of the (enabled) immediate transitions, and
then (still in the same time instant), when no more
immediate transitions are enabled, to start the occurrences
of (enabled) timed transitions. It should be noted that such
a convention effectively introduces the priority of
immediate transitions over the timed ones, so the conflicts
of immediate and timed transitions are not allowed in
timed nets. Detailed characterization of the behavior or
timed nets with immediate and timed transitions is given
in [8].

3. Leaky Bucket Scheme

The leaky bucket algorithm is used in packet-switched
networks to check that data transmissions (in the form of
packets) conform to defined limits on bandwidth and
burstiness. It can also be used as a scheduling algorithm
to determine the timing of transmissions that will
comply with the limits set for the bandwidth and
burstiness [11].

The leaky bucket scheme can be regarded as a simple
finite capacity queueing station [12], as shown in Figure 1,
with the capacity of the queue representing the capacity
of the bucket, and with (deterministic) service times
corresponding to the “leaking time” (i.e., time of forming
a single drop).

Figure 1. Leaky bucket model

77 Journal of Computer Sciences and Applications

The scheme limits the rate of outgoing packets by the
“leaking rate" and removes the burstiness from the
arriving traffic - the outgoing packets are spaced by at
least the “leaking time''. This shaping of the traffic is
performed at the cost of a delay introduced by the leaky
bucket, and this delay is a function of the “leaking rate”,
the arrival rate of packets, a , as well as the interarrival
times of packets.

A Petri net model of leaky bucket is shown in Figure 2,
in which places xp and yp represent the entry and the exit

of the scheme, place bp models the bucket, transition st
with place sp model the leaking process (one drop at a
time); st has a deterministic occurrence time sT associated
with it. Place cp with its initial marking K determines
the capacity of the bucket, and transitions at and dt either
enter an incoming packet into the bucket or drop the
packet if the bucket is full, i.e., if place cp is unmarked.

Figure 2. Petri net model of the leaky bucket scheme

Initially, place cp is marked, so the incoming packets
are forwarded to the bucket bp and the leaking begins.
After some time, if the bucket is full (and cp is empty),
the incoming packets cannot be stored in the bucket, so
the occurrences of dt remove the packets from the model.

The effects of leaky bucket scheduling is shown by
comparing the performance of a simple queueing system
with leaky bucket with the same system without the leaky
bucket scheme. In such comparisons it is assumed that the
bucket capacity is infinite, so no packets are dropped.
Leaky bucket with infinite capacity can be simplified as
shown in Figure 3.

Figure 3. Petri net model of leaky bucket with infinite capacity

A simple queueing system, composed of bursty source
and three consecutive service stations, as shown in
Figure 4, is used as an illustration of how the leaky bucket
scheme can affect the performance of a queueing system.
All service times in Figure 4 are uniformly distributed
between 0.5 and 1.5 time units.

Figure 4. Queueing example

The pattern of the bursty source is 5 arrivals with
0.1 time units interarrival times followed by a single
arrival after 6.1 time units (so the arrival rate is equal
to 1.1). A more general Petri net model of bursty arrivals
is shown in Figure 5 (for this example, 1 5K = and

2 1K =).

Figure 5. Petri net model of a bursty source 1 1 2 2* *K T K T+

Timed transitions 01t and 02t generate the first and
the second part of the bursty traffic, respectively. Places

12p and 21p are the counters for section 1 and 2,
respectively. If place 12p is marked, each occurrence of
transition 01t reduces the contents of 12p by one.
When 12p becomes unmarked, the token from 01p is
moved to 02p by an occurrence of 12 ,t and 2K tokens
are set in 21,p after which the occurrences of 02t begin.
When 21p becomes unmarked, the occurrence of 21t
moves the token from 02p to 01p and also resets 12p to

1K .
For traffic intensity equal to 0.9, the average waiting

times (obtained by simulation of the model shown in
Figure 4) are:

stage average waiting time

1 24.805
2 4.009
3 3.381

total 32.195

This result is compared with a modified system, in

which the leaky bucket is used at the front of the sequence
of service stations, as shown in Figure 6.

This result is compared with a modified system, in
which the leaky bucket is used at the front of the sequence
of service stations, as shown in Figure 6.

Figure 6. Queueing example with leaky bucket

For the leaking time equal to 0.30 time units, the
waiting times are (stage “0” is the leaky bucket):

 Journal of Computer Sciences and Applications 78

stage waiting time
0 0.681
1 21.777
2 3.739
3 2.415

total 28.612

When the traffic intensity approaches 1, the differences

are more significant (as the queueing becomes more
intensive). For traffic intensity equal to 0.95, the average
waiting times in the original system (Figure 4) are:

stage waiting time

1 69.933
2 8.568
3 6.926

total 85.427

while the waiting times in the modified system (Figure 6)
are:

stage waiting time
0 1.954
1 33.229
2 5.052
3 4.921

total 45.156

4. Token Bucket Scheme

Token bucket algorithm is based on an analogy of a
fixed capacity bucket, into which tokens are added at a
fixed rate until the bucket is full. Each token usually
represents a packet or a number of bytes in the packet (so
several tokens may be needed to match a packet). When a
packet is to be processed, the bucket is inspected if it
contains the number of tokens matching the packet, and if
this is the case, the tokens are removed from the bucket
and the packet is sent forward. If the number of available
tokens is insufficient, the packet can wait until more
tokens are added to the bucket, or the packet can be
dropped, or it is sent forward but is marked as being
nonconformant, possibly to be dropped subsequently if the
network is overloaded [13].

A conforming flow contains thus traffic with an average
rate up to the rate at which tokens are added to the bucket.

Figure 7. Petri net model of token bucket

Petri net model of the token bucket scheme, for the case
when each packet is matched by a single token, and
packets which do not have matching tokens are not
dropped but are delayed, is shown in Figure 7.

Place bp is the bucket of tokens. It bp is marked, an
arriving packet is forwarded by transition bt moving one
token from bp to cp ; cp is complementary to bp and
indicates the number of tokens missing in the bucket.
Transition st with deterministic occurrence time sT
generates tokens with rate 1/ sT . If the bucket is not full
(i.e., cp is marked), the generated token (in ap) is moved
to the bucket bp by transition at . If the bucket is full,
transition dt discards the generated token.

The capacity of the bucket controls the burstiness of the
shaped traffic. If this capacity is equal to K , at most K
arriving packets are forwarded without additional delay
while subsequent packages are affected by the token
generation rate (1/ sT).

Token bucket shown in Figure 7 controls the number of
packets but does not take the length of packets into
account. This can be illustrated by the following example.
Let the traffic be composed of two types of packets,
packets of length 1 and packets of length 3. Let α denote
the fraction of the total number of packets which are
packets of length 3 (0 α≤ ≤ 1). If the length of packets is
not taken into account, the traffic can be controlled only at
the average level of packet length. However, if this
average length changes, the traffic intensity can change
quite significantly.

Figure 8 shows channel utilization as a function of α ,
the fraction of the total number of packets which are
packets of length 3. For traffic control that does not take
packet length into account, channel utilization changes (in
Figure 8) from 0.25 (for 0α = , i.e., traffic composed
exclusively of packets of length 1) to 0.75 (for 1α = , i.e.,
traffic composed exclusively of packets of length 3). It is
rather straightforward to observe that with the same arrival
rate of packets, the bandwidth required for 0α = is three
times smaller than the bandwidth required for 1α = .

It should also be observed that since the leaky bucket
scheme does not take packet length into account, the
effects of packet length on bandwidth requirements for
token bucket without packet length control are very
similar to those for leaky bucket.

Figure 8. Channel utilization as a function of α

79 Journal of Computer Sciences and Applications

Figure 9. Petri net model for token bucket with packet length control

Packet length can be taken into account by assigning
each token to a number of bytes in the forwarded packet
and removing (from the bucket) the number of tokens
representing the length of current packet (smaller number
of tokens for shorter packets and larger numbers of tokens
for longer packets). Figure 9 shows the token bucket
scheme for two types of packets, one of length 1 and the
other of length 3. These two types of packets enter the
scheme through input places 1xp and 3xp , respectively.
Each packet of length 1 is forwarded if there is at least 1
token in the bucket (otherwise it waits in 1xp); each
packet of length 3 needs at least 3 tokens in the bucket to
be forwarded (arcs 3(,)b bp t and 3(,)b ct p with weights 3).
If there is insufficient number of tokens in the bucket, the
packet is delayed (in 1xp or 3xp).

Figure 8 also shows channel utilization as a function of
α for the case when packet length is taken into account.
This utilization is practically constant at the level of 0.5.
This level is determined by the rate of token generation in
Figure 9 (i.e., by the occurrence time of transition st).

5. Traffic Policing

Traffic policing, i.e., enforcing conformance of the
traffic to some requirements, restricts the flow of packets
by either dropping the nonconformant packets or marking
them as nonconformant so they can be dropped later. This
can be illustrated by adding the traffic shaping schemes to
the (strict) priority scheduling [14], with its well known
possibility of blocking lower priority traffic by intensive
traffic of higher priorities.

Figure 10 shows a simple priority queueing with two
classes of traffic.

Figure 10. Priority queueing

Class 1 packets take priority in accessing the transmission
channel (i.e., the server in Figure 10) over class 2 packets,
which means that class 2 packets can be transmitted only
when there are no class 1 packets waiting for transmission.

Petri net model for priority queueing is shown in
Figure 11.

Figure 11. Petri net model of a priority queueing

In Figure 11, transition 01t with place 01p generate
class 1 packets, and transition 02t with place 02p class 2
packets. If the occurrence times of 01t and 02t are
exponentially distributed, the packets have exponentially
distributed inter-arrival times; if the occurrence times are
constant, the arrivals are deterministic, and so on.
Transitions 1t and 2t represent the shared communication
channel (the server in Figure 10) and place 1p (with a
single token) guarantees that only one packet can be
transmitted at a time. The inhibitor arc 1 2(,)p t provides
the priority of class 1 over class 2, i.e., packets from 2p
can be transmitted only when 1p is unmarked (i.e., there
are no class 1 packets waiting for transmission).

The behavior of (strict) priority scheduling is illustrated
in Figure 12 by showing the utilization of the shared
channel by class 1 and class 2 packets as functions of
class 1 traffic intensity, 1ρ , with fixed traffic intensity of
class 2, 2 0.4ρ = .

Figure 12. Channel utilization for (strict) priority queueing

As 1ρ increases, the traffic in class 2 is not affected
until 1 0.6ρ = , when the channel becomes fully utilized
(1 2 1ρ ρ+ =). Further increases in channel utilization by
class 1 can be only achieved by blocking traffic in class 2;
Figure 12 shows that class 2 traffic is gradually reduced to
zero as 1ρ increases.

 Journal of Computer Sciences and Applications 80

It should be observed that in more realistic examples,
with many classes of traffic, the blocking effects are more
complex as they correspond to different interactions of
traffic in classes of higher priorities.

The blocking of traffic can be restricted by using traffic
shaping schemes. Figure 13 shows a modification of
priority queueing in which leaky bucket is used to restrict
class 1 traffic, and to prevent excessive blocking of class 2
traffic. The level of restriction is determined by the
leaking time of the scheme used.

Figure 13. Priority queueing with leaky bucket

Petri net model of this modified priority queueing
(Figure 13) is obtained by replacing place 1p in Figure 11
by the model shown in Figure 2.

The effect of traffic policing by leaky bucket is shown
in Figure 14 (which should be compared with Figure 12).
Traffic restriction introduced by the leaky bucket is set at
the level of 80%, i.e., traffic intensity for class 1 cannot
exceed 0.8 with the remaining 20% of channel bandwidth
“reserved'' for class 2 traffic.

Figure 14. Channel utilization for priority queueing with leaky bucket

Figure 15. The fraction of packets dropped as a function of traffic
intensity 1ρ

The restriction of the traffic introduced by leaky bucket
results in dropping the packets which cannot be forwarded
for transmission. Figure 15 shows the fraction of the total
number of arriving packets that are dropped because they
do not conform to the assumed traffic profile. As the
traffic in class 2 is restricted from the level of 0.4 to 0.2
(by 1ρ changing from 0.6 to 0.8), the fraction of packets
dropped increases from 0 to 0.5 (i.e., 50%). Similarly, as
channel utilization for class 1 cannot exceed 0.8, for

1 0.8ρ > all packets which cannot be transmitted are
dropped.

It should be noted that practically the same traffic
restriction obtained by using leaky bucket (Figure 14) can
be obtained by using token bucket.

6. Concluding Remarks

Traffic shaping and policing can be done at the source,
prior to entrance into the network, or within the networks
[1]. If it is done at the source, it means a kind of
self-regulation in order to ensure conformance to the
traffic contract. Such conformance is desirable to
minimize the amount of traffic disregarded at the network
nodes.

The idea of traffic control within the network is to
smooth the traffic and to reduce the queues and hence to
incur shorter queueing delays and less delay jitter [15].
Since traffic shaping is done by buffering, some queueing
delay is added during this process, but the smoothed
traffic usually quickly compensates this additional delay.
Overall, network performance is improved by smooth
traffic [2].

Intelligent traffic control schemes can provide a particular
quality of service (measured in jitter, packet loss, and
latency) for an application or a user while still allowing
other traffic to use all remaining bandwidth.

Traffic shaping is especially effective in busy networks,
i.e., when the network traffic is close to the network
capacity.

Finally, it should be noted, that the discussed methods
are just basic elements of complex computer networks and
that the behavior of real systems is very dynamic and
usually difficult to predict. Therefore good understanding
of the basic elements is needed to use the networks in an
efficient and predictable way.

Acknowledgements

The Natural Sciences and Engineering Research
Council of Canada partially supported this research
through grant RGPIN-8222.

References
[1] Chen, T.M. (2007). “Network traffic management”; in: Handbook

of Computer Networks, Bidgoli, H. (ed.), New York, NY: Wiley.
[2] Elwalid, A., Mitra, D. (1997). “Traffic shaping at a network

node: theory, optimum design, admission control”, Proc. IEEE
INFOCOM’97, 444-454.

81 Journal of Computer Sciences and Applications

[3] Allen, A.A. (1991). Probability, Statistics and Queueing Theory
with Computer Science Applications (2 ed), San Dego, CA:
Academic Press.

[4] Jain, R. (1991). The art of computer systems performance analysis,
New York, Y: J. Wiley & Sons.

[5] Flach, T., Papageorge, P., Tersiz, A., Pedrosa, L.D., Cheng, Y.,
Karim, T., Bassett, E.K., Govindan, R. (2016). “An internet-wide
analysis of traffic policing”, Proc. SIGCOMM’16, Florianopolis,
Brazil.

[6] Murata, T. (1989). “Petri nets: properties, analysis and applications”,
Proceedings of IEEE, 77(4), 541-580.

[7] Reisig, W. (1985). Petri Nets - an Introduction (EATCS
Monographs on Theoretical Computer Science 4), New York, NY:
Springer-Verlag.

[8] Zuberek, W.M. (1991). “Timed Petri nets – definitions, properties and
applications”, Microelectronics and Reliability (Special Issue on
Petri Nets and Related Graph Models), 31(4), 627-644.

[9] Zuberek, W.M. (1987). “D–timed Petri nets and modelling of
timeouts and protocols”, Transactions of the Society for Computer
Simulation, 4(4), 331-357.

[10] Zuberek, W.M. (1986). “M–timed Petri nets, priorities, preemptions,
and performance evaluation of systems”; in: Advances in Petri
Nets 1985 (Lecture Notes in Computer Science 222), 478-498,
Berlin, Heidelberg: Springer–Verlag.

[11] Swarna, M., Ravi, S., Anand, M. (2016). “Leaky bucket algorithm
for congestion control”, Int. Journal of Applied Engineering
Research, 11(5), 3155-3159.

[12] Tannenbaum, A.S. (2003). Computer Networks (4 ed), Englewood
Cliffs, NJ: Prentice-Hall.

[13] Tsai, T-C., Jiang, C-H., Wang, C-Y. (2006). “CAC and packet
scheduling using token bucket for IEEE 802.16 networks”,
Journal of Communications, 1(2), 30-37.

[14] Georges, P., Divoux, T., Rondeau, E. (2005). “Strict priority
versus weighted fair queueing in switched Ethernet networks for
time-critical applications”, Proc. 19-th IEEE International Parallel
and Distributed Processing Symposium (IPDPS’05), 141-145.

[15] Rexford, J., Bonomi, F., Greenberg, A., Wong, A. (1997).
“Scalable architecture for integrated traffic shaping and link
scheduling in high speed AT- M switches”, IEEE Journal on
Selected Areas in Communication, 15, 938-950.

