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Abstract  Illumination-invariant face recognition remains a challenging problem. Previous studies use either 
spatial or spectral information to address this problem. In this paper, we propose an algorithm that uses spatial and 
spectral information simultaneously. We first learn a basis in the spectral domain. We then extract spatial features 
using 2D Gabor filters. Finally, we use the basis and the spatial features to classify face images. We demonstrate the 
effectiveness of the algorithm on a database of 200 subjects. 
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1. Introduction 

The performance of face recognition systems under 
controlled conditions has reached a satisfactory level. 
However, when conditions are not controlled, the 
performance degrades dramatically. Illumination variation 
is one of the challenges [1]. In some cases, the variations 
caused by illumination are larger than the variations 
between subjects, causing problems for algorithms that  
do not compensate for illumination variations [2]. To 
address the challenges, many algorithms have been 
proposed. Making use of the spatial information is the 
most common approach. For example, a variety of 
subspace-based methods have been proposed [3,4]. 
Methods based on illumination-invariant features have 
also been proposed [5-14]. On the other hand, previous 
studies have shown that spectral information is useful for 
this purpose [15-30]. However, existing approaches use 
either spatial or spectral information. In recent years, 
methods that use 3D face scans have also been proposed 
[31,32]. In this paper, we propose an algorithm that uses 
spatial and spectral information simultaneously. We first 
learn a basis in the spectral domain that represents  
a large number of illumination conditions. We then  
filter the image to obtain the retinex representation  
and extract Gabor phase features from it. When a probe  
is processed, it is first projected to the basis to obtain its 
spectral representation. It is then processed to obtain phase 
features using 2D Gabor filters. Finally, the spectral and 
the phase features are used by a nearest neighbor classifier. 
In the remainder of this paper, we first review related 
work. We then introduce our method and present our 
results. 

2. Related Work 

Existing face recognition methods can be divided into 
two categories: visible spectrum-based and non-visible 
spectrum-based [2]. Visible spectrum-based methods use 
gray-scale or color images. Methods in this category can 
be further divided into two categories: variation modeling 
and invariant features. Representatives from the modeling 
category include the 3D linear subspace method [3] and 
the illumination cone method [4]. The 3D linear subspace 
method uses multiple images of the same face taken under 
different lighting directions to construct a 3D basis for the 
face using the observation that the images of a Lambertian 
surface lie in a 3D linear subspace of the image space. 
Belhumeur and Kriegman [4] showed that all images of a 
convex Lambertian object taken from the same viewpoint 
but illuminated by an arbitrary number of distant point 
sources form a convex illumination cone. Using three 
images of a face taken with different lighting directions, 
the shape and albedo of the face can be estimated. 
However, these methods often require multiple images of 
a subject to recover the subspace, which may not be 
available in practice. 

Methods using invariant features have also been 
proposed where only one image per subject during 
training is needed or multiple images are required only for 
a small set of subjects during training. Methods in this 
category aim to find illumination-invariant representations. 
The Quotient Image [5] uses the relative reflectance with 
respect to model images to represent a subject. Retinex-
based approaches [6,7,11] aim to remove the illumination 
effect by estimating the illumination through filtering. 
Transformation-based methods [8-11] use phase or other  
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representations in the frequency domain after a 
transformation of features. Zhang and Xie proposed a  
two-stage framework that consists of a preprocessing 
stage and a feature extraction stage [10]. Kaur et al. 
proposed a method that extracts LOG-DCT features from 
retinex images [11]. Fan et al. proposed a method based 
on the phase of 2D Gabor features [12]. Zhu et al. 
proposed using logarithm gradient orientation and 
logarithm gradient magnitude to derive gradient histogram 
[13]. Essa et al. proposed using local edge responses and 
region histograms as features [14]. 

Non-visible spectral ranges can also be used for face 
recognition. Thermal infrared images capture the thermal 
emission of subjects and are not affected by illumination 
conditions. Face recognition is performed in thermal imagery 
to deal with variations caused by outdoor illumination 
[15]. Ghiass et al. proposed a method that is based on a 
series of AAM models [16]. Each of these models 
specializes in a range of poses and a region of thermal IR 
face space. Shwetank et al. compared classifier performance 
of different cost functions that are maximum likelihood, 
minimum distance, and spectral angle [17]. A comprehensive 
review of thermal methods can be found in [18,19,20]. 

Previous studies have shown that spectral information 
can be used for face recognition [21-30]. Pan et al. 
proposed a method that uses spectral signatures in the 
near-infrared (near-IR) to overcome variation in expression, 
pose, and illumination [21,22,26]. The near-IR range was 
chosen because it has a larger penetration depth than for 
visible radiation which makes near-IR characteristics 
difficult for a subject to modify [33]. These works [21-30] 
showed that spectral signatures are stable for a person and 
are different from person-to-person which makes these 
signatures useful for recognition. Near-IR images also 
provide spatial information that can be exploited. 

In recent years, methods based on 3D face scans have 
also been proposed [31,32]. Drira et al. proposed a method 
that uses radial curves emanating from the nose tips to 
represent faces and elastic Riemannian metric to measure 
the distance [31]. Liang et al. proposed a Bayesian  
multi-distribution-based feature extraction method to 
enhance the dataset [32]. However, these methods require 
3D face databases which are often not available in practice. 

No previous studies have looked at making use of 
spatial and spectral information associated with Near-IR 
illumination. This is the approach we take to address 
illumination variations. 

3. Background 

A 2D Gabor function is a sinusoidal function modulated 
by a Gaussian envelope given by 

 ( ) ( ) ( )g x, y a x, y c x, y=  (1) 
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is the Gaussian component and 

 ( ) ( )( )( )c x, y exp i 2πf xcosθ ysinθ= +  (3) 

is the sinusoidal component. The standard deviations  
(σx, σy) define the size of the Gaussian envelope, f is the 
center frequency magnitude, and θ  is the center frequency 
orientation in the frequency domain. An example of a 
Gabor function in the spatial domain is shown in  
Figure 1(a) where the red area represents positive values 
of the filter and the blue area represents negative values. 
The frequency magnitude of the filter in the frequency 
domain is shown in Figure 1(b) where the central gray dot 
indicates the origin. The distance between the origin and 
the magnitude center is associated with the center 
frequency f. The angle between the line connecting the 
origin and the center frequency and the horizontal axis is 
associated with the orientation θ. 

 
Figure 1. 2D Gabor filter in the spatial and frequency domain 

4. Method 

The proposed algorithm for illumination-invariant face 
recognition uses two types of features: spectral features 
and Gabor phase features. In the remainder of this section, 
we explain how the two types of features are obtained and 
used for classification. 

4.1. Spectral Subspace 
A hyperspectral image of a Lambertian surface can be 

represented by  
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 ( ) ( ) ( ), , , , , ,I x y R x y L x yλ λ λ=  (4) 

where R(x, y, λ) is the reflectance function of the surface 
material and L(x, y, λ) is the illumination function. The 
reflectance function characterizes the surface response to 
different wavelengths and can be found using the method 
described in [21].  

We model the illumination function according to  

 ( ) ( ) ( ), , ,L x y S x y Mλ λ=  (5) 

where M(λ) describes the spectral variation and S(x, y) 
describes the spatial variation.  

We use MODTRAN [34] to model the spectral 
variation of M(λ). A set of n illumination spectra M1(λ), 
M2(λ), …, Mn(λ) is generated. An example of the resulting 
irradiance spectra Mi(λ) generated for different solar 
angles is shown in Figure 2. As we can see, the irradiance 
functions exhibit a large degree of variation. 

 
Figure 2. Modtran irradiance functions 

We use the simulated M(λ) spectra and a reflectance 
function R(λ) for a subject tissue type to simulate radiance 
spectra for S(x, y) = 1 using equation (4). S(x, y) = 1 is 
assumed to represent the effect of diffuse light on the 
surface that is used in the study to learn spectral bases. 
Previous studies have shown that low-dimensional 
subspaces are useful for representing spectral variation 
caused by varying illumination [35,36]. Similarly we can 
use a linear subspace to model I(x, y, λ) spectra. Therefore 
the image spectra for a tissue type with reflectance R(λ) 
can be represented by 

 
1

( ) ( ) ( ) ( ) ( )
K

l l
l

I M R b eλ λ λ α λ λ
=

= = +∑  (6) 

where B = [b1(λ), b2(λ), …, bK(λ)] is a basis for  
the I(λ) spectra, α = [α1, α2, ..., αΚ] is the corresponding 
coefficient vector, and e(λ)  is an error term.  

To learn the basis, we apply PCA to the set of spectra 
M1(λ)R(λ), M2(λ)R(λ), …, Mn(λ)R(λ) to obtain B. A basis 
is learned for each of the four tissue types: left cheek, right 
cheek, forehead, and chin. Denote the reflectance spectra 
for the four tissue types by R1(λ), R2(λ), R3(λ), and R4(λ). 
Each reflectance spectrum Ri(λ) is obtained by averaging 
an 11x11 pixel region for the given tissue type for a 
particular subject. An example of the four regions 

highlighted by black squares and their average radiance 
for a particular M(λ) is shown in Figure 3. 

The result of the process is a basis Bt for each of the 
four tissue types for each subject where t indicates the 
tissue type. The number of basis vectors K is chosen to 
capture 90% of the variance over the training data. 

 
Figure 3. The four tissue samples and their radiance 

4.2. Gabor Phase 
The central band of a hyperspectral image is used to 

extract Gabor phase features. This band is first normalized 
to the range [0,1] to remove scaling effects. The 
normalization is achieved by subtracting the minimum 
pixel value from each pixel and dividing the result by the 
difference between the maximum and the minimum pixel 
values. The resulting image is denoted by I(x, y). To 
alleviate shadow effects, the retinex representation [6] is 
computed according to 

 𝑟𝑟(𝑥𝑥,𝑦𝑦) = ln 𝐼𝐼(𝑥𝑥,𝑦𝑦) − ln(𝐹𝐹(𝑥𝑥,𝑦𝑦) ∗ 𝐼𝐼(𝑥𝑥,𝑦𝑦)) (7) 
where F(x, y) is a Gaussian filter and * denotes the 
convolution operation. We use 10 pixels as the standard 
deviation for the Gaussian filter. An example of an original, 
normalized, and retinex image is shown in Figure 4. For 
viewing purposes, a monotonic gray-scale mapping is 
applied to the retinex image to generate the image in 
Figure 4(d). Compared to the original image, the retinex 
representation alleviates shadow effects significantly. 

 
Figure 4. Original, normalized, and retinex images 
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The retinex image is then filtered by 2D Gabor filters. 
The phase of the filtered image is defined by 

 ( ) ( ) ( )( ), , * ,a x y angle g x y r x y=  (8) 

where g(x, y) is  a Gabor filter and angle(•) is the phase 
extraction operation. We define the Gabor filters using  
σx = 8 and σy = σx /2. We use f = 1/σx to ensure  
that the half peak bandwidth of adjacent filters overlap in 
the frequency domain. Eight orientations are used  
θ =[0, 1/8, …, 7/8]π. This gives 8 phase images that are 
used to generate features for classification. An example of 
the eight phase images using the image in Figure 4(c) is 
shown in Figure 5. The phase images demonstrate the 
orientation selection property of Gabor filters where 
structure at certain orientations is kept. Shadow effects are 
less visible in the phase images than in the original image 
shown in Figure 4(a). 

 
Figure 5. Phase images obtained using the Gabor filters 

4.3. Classification 
The four tissue samples are extracted from a probe 

image and the average radiances 𝐼𝐼𝑡𝑡�(𝜆𝜆) are computed by 
averaging over 11x11 pixel regions. 𝐼𝐼𝑡𝑡�(𝜆𝜆)  is then 
projected to the corresponding spectral basis Bt for each 
gallery subject as defined by equation (6) to obtain a 
vector of coefficients αt = {𝛼𝛼1

𝑡𝑡 , 𝛼𝛼2
𝑡𝑡  , …, 𝛼𝛼𝐾𝐾𝑡𝑡 }. We use the 

Euclidean distance to measure the spectral similarity 
between 𝐼𝐼𝑡𝑡�(𝜆𝜆)  and the best fit using the basis for the 
gallery subject according to 
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The spectral distances for the four tissue types are then 
combined to give the total spectral distance 
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where it is a binary indicator function that determines if 
the tissue type should be removed due to a shadow in the 
probe image and s indicates that the distance is associated 
with the spectral features. it is found by comparing the 
average radiance value of the central band λ0 of the probe 
image in the sample region with a threshold given by  
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where I0 is the threshold. In this study, I0 is chosen to be 
half of the maximum of the average radiances for the 
central band λ0 for the four tissue types for the probe 
image. This eliminates tissue types that are dark. 

The central band of a hyperspectral image is used to 
extract Gabor phase features as described in section 4.2. 
The image is first cropped so that only the face region is 
kept as shown in Figure 4. The cropped image is then 
processed to extract Gabor phase features. We use the 
Euclidean distance to measure the similarity between the 
phase images obtained from a probe image and a gallery 
image given by 

 ( ) ( )( )2

, ,
, ,p G

i i
x y i

d angle x y angle x y= −∑  (12) 

where i indicates that the phase image is obtained by using 
the ith Gabor filter, G indicates that the phase image is 
obtained from the gallery image, and p indicates that the 
distance is associated with the Gabor phase features. 

The total distance is defined as a weighted average of 
the two distance metrics according to 

 s s p pd w d w d= +  (13) 
where the weights 𝑤𝑤𝑠𝑠 and 𝑤𝑤𝑝𝑝  are the reciprocal of the 
maximum distance between a probe image and a gallery 
image over the test data for each metric. 

5. Experiment 

5.1. Database 
We used a face database of 200 subjects for our 

experiments [21]. All images have 31 spectral bands with 
center wavelengths separated by 0.01 µm over the near-IR 
(0.7 µm-1.0 µm). The spatial resolution is 494x468 pixels. 
All subjects are illuminated by diffuse light sources. Each 
subject has two images fg and fa which were collected 
several minutes apart. Reflectance images were obtained 
using the method described in [21]. An example of the 
two reflectance images fg and fa is shown in Figure 6. 

 
Figure 6. Original database reflectance images 

After the reflectance images were obtained, they were 
rotated and cropped so that the eyes were roughly aligned 
and only the face regions were kept. An example of a 
rotated and cropped image is shown in Figure 4(a).  
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We used fg and MODTRAN to generate training data 
and to learn spectral basis sets. To simulate irradiance 
functions M(λ) using MODTRAN, we used four 
elevations (0km, 2km, 4km, 6km),  four solar angles  
(0o, 20o, 40o, 60o), two atmospheric models (tropical and 
U.S. standard), four aerosol models (rural, urban, maritime, 
desert), and five visibilities (5km, 10km, 15km, 20km, 
25km). This gave 640 illumination conditions. We 
randomly chose 320 conditions to form a training set 
using fg according to equation (4). The training data was 
used to learn the basis for each subject for each tissue type 
according to the process described in section 2.1.  

We used fa and the other 320 conditions to generate 
simulated test data. Test data should have different 
illumination conditions than those used to generate 
training data. This is achieved by using different 
illumination spectra and spatial variation functions. Test 
data is thus obtained using simulated illumination spectra 
and spatial data according to equations (4) and (5). 

Spatial variation S(x, y) can be simulated using a frontal 
illuminated image A(x, y) and a model image m(x, y)  
that has a different illumination condition. This is an 
illumination synthesis problem and a variety of 
approaches have been proposed. We use the Quotient 
Image method [5] to obtain the synthesized image A' (x, y) 
given by 

 𝐴𝐴′(𝑥𝑥,𝑦𝑦) = 𝑄𝑄(𝐴𝐴(𝑥𝑥,𝑦𝑦),𝑚𝑚(𝑥𝑥,𝑦𝑦))  (14) 
where Q(•) denotes the Quotient Image method. An 
example of an original, synthesized and model image is 
shown in Figure 7. The spatial variation function S(x, y) is 
obtained according to 

 𝑆𝑆(𝑥𝑥,𝑦𝑦) = 𝐴𝐴′(𝑥𝑥,𝑦𝑦)/𝐴𝐴(𝑥𝑥,𝑦𝑦) (15) 

 
Figure 7. Original, synthesized and model images 

The spatial variation function S(x, y) is then used with 
the other 320 MODTRAN conditions M(λ) to simulate 
illumination functions according to equation (5). As a 
result, the simulated illumination functions provide a 
shadow effect similar to what is seen in the model image 
m(x, y) with wavelength dependence specified by M(λ). 
After the illumination functions are obtained, the radiance 
data is obtained by using fa according to equation (4) to 
form the test data. 

In our experiment, we used the central band of the 
reflectance function R(x, y, λ) of fa as A(x, y). Shadow 
conditions m(x, y) were from the Extended Yale Face 
Database B [37]. Thirty images of ten subjects under three 
independent shadow conditions (A+000E+00, A-095E+00, 
A+000E+90) were used as the training set required by the 
Quotient Image method. The condition name indicates the 
light position where A denotes azimuth followed by the 
angle and E denotes elevation followed by the angle. Both 

angles are in degrees. Nine shadow conditions of another 
subject were used as the model condition m(x, y). Among 
the nine conditions, five conditions have the light rotated 
to the right incrementally. They are A-025E+00,  
A-050E+00, A-070E+00, A+095E+00 and A-120E+00. 
Two conditions A-020E-10 and A-020E-40 have the light 
rotated to the lower right corner. Two conditions  
A-020E+10 and A-035E+65 have the light rotated to the 
upper right corner. For each shadow condition m(x, y) and 
for each subject, the spatial variation S(x, y) was obtained 
using the central band of fa and the shadow condition  
m(x, y) according to the process described above. The test 
data was obtained by using S(x, y), the other 320 spectral 
conditions from the MODTRAN data, and fa according to 
equation (4).  Therefore, for each shadow condition, we 
synthesized 320 hyperspectral test images corresponding 
to the 320 spectral conditions for each subject. An 
example of the central band of a gallery image and probe 
images of a subject is shown in Figure 8. 

4.2. Results 
The classification results for the various illumination 

conditions are shown in Table 1 and Table 2. We report 
the results for each shadow condition separately. The 
spectral result for each table entry is the average 
performance over the 320 test images. The Gabor phase 
results are the same for all of the test images with a given 
shadow condition because only the central band of an 
image is used to extract features and it is normalized to 
[0,1] so that the scaling effect introduced by the spectral 
variation is removed. 

 
Figure 8. Gallery and probe images used in the experiment 
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Table 1. Classification rates for five illumination conditions 

llumination 
Method A-025E+00 A-050E+00 A-070E+00 A-095E+00 A-120E+00 
Spectral 0.67 0.63 0.53 0.51 0.34 
Gabor phase 0.91 0.92 0.88 0.75 0.13 
Spectral+Gabor phase 0.96 0.95 0.96 0.87 0.47 
SQI 0.59 0.56 0.59 0.17 0.01 
Eigenface 0.80 0.26 0.09 0.03 0.01 

Table 2. Classification rates for four illumination conditions 

llumination 
Method A-020E-10 A-020E-40 A-020E+10 A-035E+65 
Spectral 0.67 0.58 0.67 0.42/0.49 
Gabor phase 0.91 0.90 0.91 0.91 
Spectral+Gabor phase 0.96 0.95 0.96 0.95/0.96 
SQI 0.59 0.56 0.61 0.55 
Eigenface 0.91 0.70 0.88 0.16 

 
To compare with other algorithms, we also used the 

non-weighted version of the SQI method [7] which  
is based on retinex. For this method, we used a  
Gaussian filter with a standard deviation of 10 pixels as 
the smoothing filter and the natural logarithm as the 
nonlinear transformation. We applied the method to the 
central band of a hyperspectral image and averaged the 
results for the 320 spectral conditions. The result is 
reported as SQI in Table 1 and Table 2. We also used  
the Eigenface method provided by the CSU Face 
Identification Evaluation System [38,39] for comparison. 
Results from this method are also included in Table 1 and 
Table 2. 

As the illumination direction moves to the right, the 
face becomes darker, and the difficulty of classification 
increases. This is reflected in Table 1 as the performance 
of all methods degrades or remains about the same as we 
move from left to right. Among the Gabor phase method, 
the SQI method, and the Eigenface method, all of which 
are spatial methods, the Gabor phase method performs 
reasonably well across the shadow conditions except for 
the condition A-120E+00 where the light is almost behind 
the face which leaves the face very dark. When the light is 
slightly behind the face as for condition A-095E+00, the 
method still achieves a 75% classification rate. This 
suggests that retinex-based phase information is invariant 
to shadow variation to a large extent. On the other hand, 
the SQI method and the Eigenface method degrade 
significantly as the face gets darker, degrading from an  
80% classification rate to less than a 1% classification rate. 
Spectral features also provide a significant amount of 
useful information for classification. The spectral method 
achieves the best result among all of the individual 
methods for the most extreme condition A-120E+00. This 
suggests that the spectral method is more robust in 
extreme shadow conditions. The spectral results also 
suggest that the spectral basis learned from the training 
data is able to represent variation in the test data. By using 
the spectral and Gabor phase features, the classification 
rate is improved further and reaches more than 85% for 
the four less severe shadow conditions and 47% for the 
most extreme condition. The combined method 
outperforms the baseline methods by a large margin 
ranging from 15% to 70%. 

Table 2 includes the classification results when the light 
position also changes vertically. In this case, shadow 
effects are moderate. The Gabor phase method performs 
consistently across the shadow conditions and achieves a 
90% classification rate for all conditions. Interestingly, 
spectral classification does not work well for condition A-
035E+65 where the entire face except the nose area is 
dark. This suggests that in order for spectral features to be 
effective, a minimum level of illumination is required. We 
speculate that if spectral features are extracted from the 
nose, then performance could be improved. To test this 
hypothesis, another tissue sample extracted from the nose 
area was added as shown in Figure 9 and the results are 
reported after the slash in Table II. The improved results 
support this hypothesis. In other words, for spectral 
features to be effective, they need to be extracted from 
areas that have a certain level of illumination. Again, by 
using the spectral and Gabor phase features, performance 
is improved. The combined method reaches a 95% 
classification rate across all of the illumination conditions. 
Compared to the baseline methods, the combined method 
is more effective and more robust to illumination variation. 

 
Figure 9. Spectral sample from nose 

The cumulative match score (CMS) functions for the 
nine shadow conditions are shown in Figure 10 and  
Figure 11 where rank N means that the correct match is 
within the top N candidates selected by the algorithm. 

From Figure 10 we see that the combined method is the 
least affected by the illumination variation. This method 
reaches a 95% classification rate at rank 3 for the first four 
shadow conditions and an 85% classification rate at rank 
10 for condition A-120E+00. This suggests that spectral 
and spatial information are complementary to each other. 
On the contrary, the classification rate for the SQI method 
and the Eigenface method varies significantly as the 
conditions change, and for the most extreme condition  
A-120E+00, the classification rate is not more than 20% 
even at rank 10. 
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Figure 11 shows the CMS functions for the illumination 
conditions when the light also moves vertically. In this 
case, the Gabor phase method and the combined method 

perform consistently across illumination variation while 
the other methods are more significantly affected by the 
variation. 

 

 
Figure 10. Cumulative match scores for five illumination conditions 
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Figure 11. Cumulative match scores for four illumination conditions 

 
Figure 12. Distance images obtained by the SQI method 

A case-by-case analysis reveals something interesting. 
Figure 12 and Figure 13 show an example of a subject 
misclassified by the SQI method that is classified correctly 
by the Gabor phase method. Figure 12(a) shows the 
squared difference between the SQI representation of the 
probe image and the correct gallery image, and  
Figure 12(b) shows the squared difference between the 
SQI representation of the probe image and the mismatched 
gallery image. Each of the difference images is on a log 
scale where larger distances are redder. These images 
show that a significant proportion of the difference is near 
high intensity areas like the eyes and nose. Figure 12(a) 
seems to have a smaller total difference than in  
Figure 12(b) due to a smaller reddish area, whereas a 

region-by-region comparison reveals that the eyebrow and 
nostril areas contribute a significant amount of error which 
makes the total difference in Figure 12(a) larger than the 
total difference in Figure 12(b). 

 
Figure 13. Distance images obtained by the Gabor phase method 

For the same probe and gallery images, Figure 13(a) 
shows the difference between the phase images of the 
probe image and the correct gallery image, and  
Figure 13(b) shows the difference between the phase 
images of the probe image and the mismatched gallery 
image. The difference at each pixel is obtained by 
summing up the squared differences of the eight phase 
images between the probe image and the gallery image. 
Compared to Figure 12, the difference is no longer 
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concentrated in high intensity areas but is scattered around 
the face. This suggests that Gabor phase features are more 
dependent on fine structures than on intensity levels. 
Visually, Figure 13(b) has more bright spots than  
Figure 13(a) which results in the correct gallery image 
being selected. 

Figure 14 shows an example of a probe that is classified 
incorrectly when using Gabor phase features. The probe 
image has an exaggerated expression causing the eyes to 
look very different from those in the correct gallery image. 
This is reflected in the Gabor phase difference image 
shown in Figure 14(a) as the difference between the probe 
and the correct gallery images has large values around the 
eyes. Fortunately, spectral features provide helpful 
information. Figure 15 plots the absolute difference 
between the probe spectrum p and the reconstructed 
spectrum g obtained by projecting the probe spectrum to 
the basis for the correct gallery subject, and the absolute 
difference between the probe spectrum p and the 
reconstructed spectrum g' obtained by projecting the probe 
spectrum to the basis for the mismatched gallery subject. 
From the figure, we see that the spectral difference is 
smaller for the correct match than for the incorrect match. 

 
Figure 14. Distance images obtained by the Gabor phase method 

 
Figure 15. Spectral feature distances 

In other cases, Gabor phase features classify correctly 
while spectral features misclassify a probe image.  
Figure 16 shows an example where the probe image is 
misclassified by spectral features while Figure 17 shows 
that the probe image is classified correctly by the Gabor 
phase features. 

 
Figure 16. Spectral feature distances 

 
Figure 17. Distance images obtained by the Gabor phase method 

6. Conclusion 

We have presented an algorithm for illumination-invariant 
face recognition in hyperspectral images that uses both 
spatial and spectral information. We constructed a basis to 
represent spectral variation. We used a Gaussian filter to 
alleviate shadow effects and designed a set of 2D Gabor 
filters to extract spatial information. Experimental results 
show that phase information and spectral information are 
complementary to each other and that the new approach 
can accommodate large illumination variation to improve 
on the effectiveness of existing methods. Future work 
could include testing the method on a larger dataset or 
using other filtering techniques to extract invariant 
features. 
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