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Abstract  Brain science and brain-inspired artificial intelligence have been very significant areas. They have a 
wide range of applications including military and defense, intelligent manufacturing, business intelligence and 
management, medical service and healthcare, etc. Many countries have launched national brain-related projects to 
increase the national interests and capability in the competitive global world. In this paper, we introduce some 
concepts, principles, and emerging technologies of brain science and brain-inspired artificial intelligence; present 
their advances and trends; and outline some challenges in brain-inspired computing and computation based on 
spiking-neural-networks (SNNs). Specifically, the advances and trends cover brain-inspired computing, 
neuromorphic computing systems, and multi-scale brain simulation, brain association graph, brainnetome and the 
connectome, brain imaging, brain-inspired chips and brain-inspired devices, brain-computer interface (BCI)  
and brain-machine interface (BMI), brain-inspired robotics and applications, quantum robots, and cyborg  
(human-machine hybrids). 
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1. Introduction 

The objective of neuromorphic engineering is to perform a 
brain-inspired computing architecture as an alternative 
paradigm to the von Neumann processor. A hardware-based 
SNN architecture was proposed for unsupervised learning 
with spike-timing-dependent plasticity (STDP) synapse 
array using flash memory synaptic array [1]. Cognitive 
computing generally fits in the probability method of 
statistics theory. It is a method that reasons with purposes, 
learns at scales, interacts with humans naturally, and 
enables to understand and analyze unstructured data [2]. 

Associative learning is a basic cognitive function by 
which discrete and often various percepts are linked 
together. Auditory- and multisensory-guided equivalence 
learning paradigms were introduced. Auditory, visual, and 
multi-sensory guided association learning are similarly 
effective for humans. The multi-sensory (audiovisual) 
stimuli elicits the best performance in cognitive learning. 
The test phase is generally a more difficult cognitive  
task compared with the acquisition phase, because  
multi-sensory information processing can make 
participants’ performance better [3]. 

Phase-change memory devices are useful for 
developing of memcomputing and neuromorphic 

applications due to proven large-scale manufacturability 
and the multi-level storage capability. By using electrical 
pulses, phase-change materials reversibly change from the 
crystalline to the amorphous phase. The resistance change 
due to the change of the structural phase configuration is 
used for storing information. The key of this conventional 
method lies in that phase-change materials are employed 
for both writing information and retrieving the stored 
information. The drawback of the method lies in their high 
defect density and highly disordered nature make them 
susceptible to highly undesirable electrical effects (e.g., 
noise and drift) though phase-change materials have very 
good phase-transition attributes [4]. 

Military Brain Science can help create a whole new 
"brain war" combat style. It deals with various brain 
activity patterns and influencing factors with the following 
goals: 1) understanding the brain—be familiar with risk 
factors of brain injury; 2) protecting the brain—targeted 
prevention of the brain damage; 3) monitoring the brain—
monitoring brain functions using technology and devices; 
4) injuring the brain—facilitating the development of 
types of weapons (such as explosion, light, magnetic) that 
injure the brain; 5) interfering with the brain—making 
brain dysfunction or a loss of control; 6) repairing the 
brain—performing the reconstruction of brain functions 
with advanced technology; 7) enhancing the brain-enhancing 
the brain function level of personnel who are involved in a 
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special task using various means (e.g., magnetism,  sound, 
and electricity); 8) simulating the brain—using methods such 
as brain-inspired robot intelligence; and 9) arming the 
brain—using brain-machine interfaces (BMIs) as a focus 
[5].  

The main purpose of this paper is to introduce emerging 
technologies of brain science and brain-inspired artificial 
intelligence (such as brain-inspired chips, brain-inspired 
computing, neuromorphic computing systems, BCI and 
BMI, brain-inspired robotics, quantum robots, and cyborg); 
present their advances and trends; and point out some 
challenges in brain-inspired computing and SNNs-based 
computation.  

2. Brain-inspired Computing, 
Neuromorphic Computing Systems, 
and Multi-scale Brain Simulation  

2.1. Brain-inspired Computing 
The human brain can complete advanced computing 

tasks (e.g., recognition, cognition, and learning) with low 
frequency of neuronal spiking and extremely low power 
consumption. This results from highly parallel 
computation and event-driven schemes of computation. 
Energy is consumed only where and when it is required 
for processing information. Major challenges in imitating 
the human brain are replicating the time-dependent 
plasticity of synapses and obtaining great connectivity in 
neuron networks. The mix of high computing capability 
and density scalability can be achieved with nanodevices, 
by resistive-switching memory (RRAM) devices [6].  

An electronic synapse with long-term and short-term 
plasticity is important for a brain-inspired neuromorphic 
system. In biological systems, long-term plasticity is the 
foundation of learning and memory behaviors while  
short-term plasticity is related to critical computational 
functions. The electronic synapse can vividly emulate 
long-term and short-term plasticity as well as voltage 
sensitivity in the bio-synapse, which is the key device 
foundation for brain-inspired neuromorphic computing [7]. 

Computing with high-dimensional (HD) vectors (also 
called hypervectors) is brain-inspired and an alternative to 
computing with scalars. Key features of the HD computing 
lie in well-defined arithmetic operations on hypervectors, 
scalability, fast learning, generality, robustness, and ubiquitous 
parallel operations. Accelerating HD computing on a 
parallel ultra-low power platform with optimal operations 
and memory accesses was presented [8].  

A brain-inspired associative memory with robust 
retrieval and big capacity has been presented. It is named 
Columnar Organized Memory (COM) and consists of spiking 
winner-take-all (WTA) networks that are building blocks 
of the neocortex. A spiking WTA consists of spiking neurons 
linked by inhibitory connections. The message storage of 
a COM includes pattern storage and pattern association. 
The capacity of a COM was analyzed and evaluated by 
using simulation. It was demonstrated the capacity of a 
COM is linearly related to that of a spiking WTA [9]. 

Target classification and recognition (TCR) of high 

resolution remote-sensing images is important for an earth 
observation system and an unmanned autonomous system. 
A brain-inspired computing model for TCR was proposed 
based on deep learning and cognitive computing. An 
ensemble learning algorithm was developed based on deep 
spiking convolutional neural network and hierarchical 
latent Dirichlet allocation [2]. 

The Wisdom Web of Things (W2T) provides a social-
cyber-physical space for human communication and 
activities. W2T generates big data during the connection 
of computers, humans, and things. It integrates big data 
related to human behaviors and brain-related big data in a 
social-cyber-physical space for realizing a harmonious 
symbiosis. Brain informatics provides the key technique 
of performing such an attempt through providing 
informatics-enabled brain study and applications in the 
social-cyber-physical space; therefore, creating a brain big 
data cycle [10]. 

2.2. Neuromorphic Computing Systems 
Neuromorphic computing refers to various brain-

inspired computers, devices, and models inspired by the 
interconnectivity, energy efficiency, and performance of 
the brain [11]. Memories are distributed in a 
neuromorphic approach. Adaptation and the learning 
mechanism in a neural system are mediated by multiple 
types of ‘‘plasticity’’. The most common types are 
homeostatic plasticity, structural plasticity, long-term 
potentiation, short-term plasticity mechanism, and long-
term depression mechanism [12]. 

The activity of synapses between the pre-neuron and 
post-neuron is important for memory and learning. STDP 
is a significant learning rule in hippocampal neurons to 
modulate the synaptic weight (or connection strength). A 
memristor has been a promising candidate of artificial 
synaptic devices for brain-inspired neuromorphic 
computing. Diverse state dependent STDP functions were 
fulfilled with various initial resistance states. A multilevel 
Pt/HfOx/Ti memristor was developed as an artificial 
synaptic element for brain-inspired computing. Devices 
under various initial resistance states have diverse types of 
STDP and can be employed for spiking neural networks [13].  

The SpiNNaker system is a multi-core computer that is 
developed to perform real-time simulation of the 
behaviors of up to a billion neurons. An IBM spiking 
neural network ASIC named “TrueNorth” is different 
from the von Neumann architecture. Synapses in the 
TrueNorth chip do not perform any plasticity mechanisms; 
therefore, they are not able to implement online learning 
or form memories. The aim of co-localizing computation 
and memory and mitigating the von Neumann bottleneck 
is just partly achieved. The NeuroGrid system aims to 
implement large-scale neural models and emulate their 
functions in real time. Important synapse and neuron 
functions (e.g., integration, thresholding, exponentiation, 
and temporal dynamics) are emulated directly using the 
physics of field-effect transistors biased in the 
subthreshold regime. Another method for simulating 
large-scale neural models is the one in the BrainScales 
project. BrainScales tries to fulfill a wafer-scale neural 
simulation platform [12]. 
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Figure 1. The Human Brain Project targets the multi-level organization of the brain [14] 

2.3. Multi-scale Brain Simulation and 
Research 

The Human Brain Project (HBP) has been launched that 
is a ten-year European Flagship for the reconstruction of 
the brain’s multiscale organization. The IT architecture of 
the HBP is based on cloud-based collaboration platforms 
with workflow systems, databases, supercomputers, and 
petabyte storage. The HBP researches the brain at various 
spatial scales (from molecules to large networks) and 
temporal scales (from milliseconds to years) through 
various approaches, instruments, tools, etc. (shown in 
Figure 1). The HBP initially contains the following 
platforms: Medical Informatics, Neuroinformatics, Brain 
Simulation, Neuromorphic Computing, High-Performance 
Analytics and Supercomputing, and Neurorobotics—
connected through the ‘‘Collaboratory’’ (COLLAB) 
interface [14]. 

3. Brain Association Graph and 
Brainnetome 

3.1. Brain Association Graph 
Theoretical graph methods have been employed to 

quantify topological attributes of complicated brain 
networks. Hubs with importance in the brain network can 
be characterized by a set of graph metrics (e.g., degree, 
participation coefficient, and betweenness centrality). 
Based on the graph metrics, network nodes can be 
characterized as different kinds of hubs (e.g., connector 
and provincial hubs) [15]. 

There are influences of stress on the connectivity of 
regional hubs in the brain; however, most of connections 
are integrative in nature due to their crossing distinct 
modules. The application of graph theory to neuroimaging 
data needs to reach a consensus on suitable parcellation 
schemes that are used in defining nodes with  
biological meanings, thresholding or weighting edges for 
computation graphs, or the reliability of graph metrics. 
There are still substantial gaps in the directions of research 
such as the careful examination of influences of stressor 

types and timing on adolescents’ brain development and 
critical considerations of sex differences, prospective 
studies of influences of stress on adolescents and children. 
Metrics has been proposed that is useful for understanding 
influences of stress on adolescents’ brains and represents a 
method being able to facilitate comparisons across 
multimodal data for developing new insights [16]. 

3.2. Brainnetome and the Connectome 
Brainnetome is a powerful framework for exploring the 

brain’s functional and anatomical networks at different 
spatiotemporal scales [22]. The connectome (the entity of 
neural connections in the brain) helps understand the brain 
with normal functions or diseases. It also helps infer how 
vulnerable the brain is to neurodegeneration and traumatic 
stress, how well the brain recovers from damages, and 
how intelligent a person is. Connectomics deals with the 
connectome as a mathematical graph with nodes (gray 
matter brain structures) and links of the graph (white 
matter tracts). The weight of the link represents the 
functional or structural connectivity. Graph theoretical 
measures can be used as biomarkers for psychiatric and 
neurological diseases. Diseases are often resulted from 
pathological alterations in specific sub-networks or 
individual connections. The macroscopic functional and 
structural connectome can be measured noninvasively. 
Functional brain connectivity can be given as correlation 
values between traces of electrical activity in various brain 
areas. Structural connectivity can be measured by 
diffusion tensor imaging (DTI). It is necessary to integrate 
connectivity measurements from various modalities for a 
compressive picture of the macroscopic connectome [17]. 

Mapping brain imaging data to networks, where nodes 
indicate anatomical regions of the brain and edges 
represent the occurrence of fiber tracts between them, has 
been able to perform a graph-theoretic analysis of the 
human connectome. It has been revealed that the 
connectome has a hyperbolic geometry and a complicated 
structure on the scale between edges and mesoscopic 
anatomical communities within cerebral hemispheres. 
This structure with simplicial complexes of various sizes 
and cycles describes the higher-order connectivity among 
various regions of the brain [18]. 
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The connectome deals with wiring patterns of the 
neurons in the brain. The influence of its constituents on 
the dynamics is a critical topic in systems neuroscience. 
The key role of specific structural links between neuronal 
populations for the global stability of cortex was 
investigated and the relationship between experimentally 
observed activity and anatomical structure was elucidated. 
A framework was proposed that can evaluate the rapidly 
growing body of connectivity data based on basic 
constraints on brain activity and combine physiological 
and anatomical data to create a consistent picture of 
cortical networks [19]. 

4. Brain Imaging 

Brain imaging and relevant data from other sources can 
be useful in predicting “brain age” (an individual’s 
apparent age) after comparing the individual’s data with a 
population dataset spanning a range of ages. The 
difference between the actual age (the “delta”) and the 
brain age can be calculated, which provides a result 
regarding whether a brain has aged [20]. 

Table 1. Some Methods of Brain Imaging and Findings in DOC 

Methods Usages Findings in DOC 

Electroenc
ephalograp
hy (EEG) 

Records electrical 
activities and 
explores neural 
oscillations/ 
interactions or 
potential 
fluctuations time. 

1. Several indexes of functional 
brain networks in delta and alpha 
bands indicate correlations with 
the consciousness level. 
2. Enhanced delta power and 
reduced theta and alpha power in 
the DOC. 
3. Mismatch negativity, P3, etc. 
provide the information of the 
consciousness level. 

Positron 
Emission 
Tomograp
hy (PET) 

Detects local 
metabolic processes 
or the changes of 
blood flow in the 
brain in a task or 
resting state. 

1. Frontoparietal networks and 
their connections to thalamus 
nuclei are significant for the 
occurrence of consciousness. 
2. Global brain metabolism 
cannot be a sensitive marker for 
tracing the consciousness level. 

Functional 
Magnetic 
Resonance 
Imaging 
(fMRI) 

Detects brain 
activity through 
measuring blood-
oxygen-level-
dependent changes 
and explores 
functional 
connections between 
brain areas. 

1. Functional connections in the 
default mode network (DMN) 
and between the DMN and 
executive control network can be 
the key for the DOC 
prognosis/diagnosis. 
2. A number of resting state 
networks are disrupted in the 
DOC. 

Diffusion 
Magnetic 
Resonance 
Imaging 
(dMRI) 

Measures the 
diffusion of water 
along axon, 
estimates major 
fiber tracts between 
brain areas. 

1. Fibers that connect cortical 
regions within the DMN and 
between DMN regions and 
thalamus are correlated to 
consciousness levels. 
2. DOCs with various etiologies 
reveal different distributions of 
impaired white matters. 

Functional 
Near-
infrared 
Spectrosco
py (fNIRS) 

Detects brain 
activity according to 
the attenuation 
changes of near 
infrared through 
one’s cortex, 
explores functional 
connections. 

fNIRS has a unique value for 
quantifying the brain network 
activity and therapeutic effects in 
the DOC. 

Imaging methods such as X-ray computed tomography 
and electroencephalography (EEG) have been employed 
in understanding nervous systems and clinical services, 
but their spatial resolution is limited and has weak 
relevance with the cellular activity of the neuron network. 
Microelectrode arrays can be used on the cortex surface or 
implanted into the deep brain, monitoring neuronal 
activities through capturing intracellular and extracellular 
signals. A mathematical model was created to study the 
optical performance of an implantable and thin-film image 
sensor for investigating neuronal fluorescence activities in 
the deep brain. Such a simplified model based on the 
photon transport theory achieves an accuracy comparable 
with the standard Monte Carlo ray tracing method [21].  

As for the functional networks in the brain, functional 
neuroimaging enables to measure the brain’s electrical 
activity, hemodynamic activity, and metabolic activity. 
These activities help measure impaired brain networks of 
patients with disorders of consciousness (DOC). As for 
the anatomical networks in the brain, diffusion MRI is a 
non-invasive technology to show the micro-geometry of 
nervous tissues and exploring the connectivity of white-
matter fibers. Table 1 shows some methods of brain 
imaging and findings in DOC [22]. 

5. Brain-inspired Chips and Brain-
inspired Devices 

Neuromorphic computing refers to the hardware 
acceleration of brain-inspired computing. It uses the VLSI 
(very-large-scale integration) system with electronic 
analog circuits to emulate the neuro-biological architecture of 
the nervous system. How to improve the power efficiency 
and reduce the power consumption of neuromorphic 
computing systems (NCS) is a key issue. One way is using 
neuromorphic-specific hardware, e.g., neuromorphic chips 
and emerging nonvolatile memory in neuromorphic 
computing. In addition, optimizing hardware-aware algorithms 
also saves energy and improves the performance of 
emerging devices. Massive parallelism with “spikes” (the 
short pulses that carry information between neurons) is the 
future of the NCS design. Digitalized NCS and spike 
based NCS will be developed fast [23]. 

Memristors are nanoscale devices that have been 
proposed for use as synapses in a brain-inspired 
computing system. A synapse structure that can perform 
both an inhibitory and an excitatory action has been 
presented. This structure has the exponential-like learning 
behavior. Users can control learning behaviors and 
remedy effects of switching rate mismatch in memristors 
through discretizing the neuron spike in time. Synapses 
can be employed to fulfill spiking neural networks with 
STDP based on-chip learning [24]. 

The fast growth of brain-inspired computing along with 
the inefficiencies in the CMOS realization of neuromorphic 
systems has resulted in the development of efficient 
hardware realization of functional units of the brain (i.e., 
neurons and synapses). But much work has been done in 
the electrical area with possible limitations in interconnect 
losses, switching speed, and the packing density of large 
integrated systems. Therefore, neuromorphic engineering 
in the photonic area has obtained much attention. A purely 
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photonic operation of an Integrate-and-Fire Spiking 
neuron has been proposed, which relieves the energy 
constraints of phase change materials (PCM) [25]. 

6. Brain-Computer Interface,  
Brain-Inspired Robotics, and Cyborg 

Brain-computer interfaces (BCIs) translate electrical 
signals from brain activity into interpretable information 
without neuromuscular control, reflecting a user's ideas 
and intents. The BCI technology could be divided into 
invasive and non-invasive according to whether a surgery 
is conducted. In non-invasive BCIs, the EEG-based BCI 
speller has been used for paralyzed patients because of 
low cost, a high time-resolution, external electrode safety, 
and extensive applications [26]. 

Brain-machine interface (BMI) is an emerging technology 
that contributes to the development of artificial limbs and 
new input devices by integrating advanced technologies 
(e.g., signal analysis, wireless communication, robot 
control, and neural electrodes). Neural electrodes are a key 
component of the BMI because they can record many 
rapid signals emitted by neurons. Electrodes are designed 
according to various templates using diverse materials  
to obtain accurate consistent, and stable signals. 
Micromachining technologies and microelectromechanical 
systems (MEMS) can reduce the of electrode size. Various 
designs and materials are available to record many 
selective and low-noise signals. Neuronal signals have 
been divided into three categories: non-penetrating  
type—records signals from on or beneath the scalp; 
penetrating-type electrode—measures signals in vivo, 
particularly in the brain; and microelectrode array (MEA) 
electrode— records neuronal signals in vitro [27]. 

Table 2. Platforms for Robot Control Based on SNN [28] 

Platform Names Methods 
Musculoskeletal 
Robots 

Integrating Myorobotics with SpiNNaker the 
proof of principle of a system. 

Neurorobotics 
Platform 

Design, import, and simulate various robot 
bodies and diverse brain models in a rich 
environment. 

Retina Simulation The platform is integrated in the Neurorobotics 
Platform (NRP). 

AnimatLab 
Provide functions (e.g., robot modeling), two 
neural models, and plugins used for importing 
other models. 

iSpike Interface between the iCub humanoid robot and 
SNN simulators 

Neural Self-driving 
Vehicle Simulation 
Framework 

A visual encoder from camera images to spikes 
inspired by the silicon retina, and a steering-
wheel decoder. 

 
Spiking-neural-networks (SNNs) computation greatly 

benefit from parallel computation. A spiking neuron does 
not need to receive weight values from each presynaptic 
neuron at each computation step. Only a few neurons are 
active in an SNN at each time step, the classic bottleneck 
of message passing is removed. Communication time and 
computation cost are more well-balanced in SNN parallel 
operation compared with traditional ANNs. By mimicking 
the brain mechanism, SNNs have demonstrated great 

potential in gaining sophisticated robotic intelligence 
according to computation capabilities, speed, and energy 
efficiency. Some available platforms are listed in Table 2. 
A big challenge of control tasks based on SNNs is a lack 
of a commonly applicable training method like 
backpropagation in traditional ANNs [28]. 

Cognitive developmental robotics (CDR) deals with 
robots that can interact with a dynamic environment and 
have brain-inspired cognitive abilities, e.g., memory and 
learning. CDR can respond to a dynamic environment 
through a SNNs-based controller. In order to develop 
neuro-robots, it is necessary that emotional cognition 
makes robots with anthropomorphic and diversified 
emotions have natural communication with humans and 
environment. Brain-inspired intelligent robots can be 
products with the intersectional development of 
neuroscience and robotics [29].  

The mix of artificial microrobots and natural organisms 
(called cyborg microrobots) has paved a hopeful way for 
future development of microrobots, especially for their 
applications in biomedicine. A cybernetic organism 
(cyborg) is an organism that has restored functions or 
enhanced abilities because of the combination of artificial 
components and technologies.  Applications of cyborg 
microrobots include water purification, cancer therapy, 
targeted drug delivery, etc. Microrobots used for targeted 
drug delivery can control the time and location of the drug 
release to increase the efficacy as well as decrease the 
drug side effect [30]. 

The efficiency of a quantum robot over a classical robot 
was addressed, using an architecture for quantum robots 
based on three fundamental parts: sensory units, a 
quantum controller/actuator, and multi quantum 
computing units. Quantum robots can be artificially 
intelligent measurement systems that are able to measure 
target quantum systems and act on targets based on 
measured results; therefore, they can be used to manage 
quantum physical systems, leading to an adaptive 
dynamics and fast optimization of target quantum systems. 
A connection between nanotechnology, quantum robotics, 
and quantum Artificial Life (ALife) research was created. 
This is especially relevant to the development of quantum 
cyber-physical-cognitive (CPC) systems within the 
context of quantum nanotechnology, including the 
possibility of interaction and nanoscale management of 
quantum systems. More recent works focused on quantum 
robotics and machine learning [31]. 

The development of neural implants for enhancing 
people's memory enables to develop cyborgs (human-
machine hybrids) with superior capacities. Individuals’ 
ethical assessments of memory implants indicates 
differences in their intentions to use them, but does not 
moderate the influence of negative emotions, positive 
emotions, effort expectancy, performance expectancy, and 
social influence on the intention of using them [32]. 

7. Conclusion 

Brain-inspired computing enhances the efficiency of 
information processing and computation and save energy 
greatly because it is based on computing units with the  
co-location of memory and processing. This is very 
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important for achieving strong AI, especially for Big Data 
analytics. Neuromorphic chips help improve the power 
efficiency and reduce the power consumption of 
neuromorphic computing systems. Also, optimizing the 
hardware-aware algorithm saves energy and improves the 
device performance. 

Brain association graphs based on graph theories 
quantify topological structures and attributes of complex 
brain networks. Brainnetome has been a key tool for 
studying the brain in normal functioning and disease. 
Brain association graphs, brainnetome, and neuroimage 
processing play important roles in studying the structure–
function interactions of the brain. 

Brain-computer interfaces enable to translate electrical 
signals from brain activities into interpretable information 
and brain-machine interfaces help develop artificial limbs 
and new input devices. Spiking-neural-networks have 
great potential in gaining sophisticated robotic intelligence. 
Quantum robots can measure target quantum systems and 
manage quantum physical systems. The development of 
neural implants for enhancing people's memory helps 
develop powerful cyborgs. 

References 
[1] Kang WM, Kim CH, Lee S, Woo SY, Bae JH, Park BG, Lee JH. 

A Spiking Neural Network with a Global Self-Controller for 
Unsupervised Learning Based on Spike-Timing-Dependent 
Plasticity Using Flash Memory Synaptic Devices. In2019 
International Joint Conference on Neural Networks (IJCNN) 2019 
Jul 14 (pp. 1-7). IEEE. 

[2] Liu Y, Zheng FB. Object-oriented and multi-scale target 
classification and recognition based on hierarchical ensemble 
learning. Computers & Electrical Engineering. 2017 Aug 1; 62: 
538-54. 

[3] Eördegh G, Őze A, Bodosi B, Puszta A, Pertich Á, Rosu A, Godó 
G, Nagy A. Multisensory guided associative learning in healthy 
humans. PloS one. 2019 Mar 12;14(3):e0213094. 

[4] Koelmans WW, Sebastian A, Jonnalagadda VP, Krebs D, 
Dellmann L, Eleftheriou E. Projected phase-change memory 
devices. Nature communications. 2015 Sep 3; 6: 8181. 

[5] Jin H, Hou LJ, Wang ZG. Military Brain Science–How to 
influence future wars. Chinese Journal of Traumatology. 2018 Oct 
1; 21(5): 277-80. 

[6] Ielmini D. Brain-inspired computing with resistive switching 
memory (RRAM): Devices, synapses and neural networks. 
Microelectronic Engineering. 2018 Apr 15; 190: 44-53. 

[7] Sun Y, Xu H, Liu S, Song B, Liu H, Liu Q, Li Q. Short-term and 
long-term plasticity mimicked in low-voltage Ag/GeSe/TiN 
electronic synapse. IEEE Electron Device Letters. 2018 Feb 26; 
39(4): 492-5. 

[8] Montagna F, Rahimi A, Benatti S, Rossi D, Benini L. PULP-HD: 
Accelerating brain-inspired high-dimensional computing on a 
parallel ultra-low power platform. InProceedings of the 55th 
Annual Design Automation Conference 2018 Jun 24 (p. 111). 
ACM. 

[9] Shamsi J, Shokouhi SB, Mohammadi K. On the capacity of 
Columnar Organized Memory (COM). In2018 IEEE 61st 
International Midwest Symposium on Circuits and Systems 
(MWSCAS) 2018 Aug 5 (pp. 65-68). IEEE. 

[10] Zhong N, Yau SS, Ma J, Shimojo S, Just M, Hu B, Wang G, Oiwa 
K, Anzai Y. Brain informatics-based big data and the wisdom web 
of things. IEEE Intelligent Systems. 2015 Sep 4; 30(5): 2-7. 

[11] Hasan MS, Schuman CD, Najem JS, Weiss R, Skuda ND, 
Belianinov A, Collier CP, Sarles SA, Rose GS. Biomimetic, Soft-
Material Synapse for Neuromorphic Computing: from Device to 

Network. In 2018 IEEE 13th Dallas Circuits and Systems 
Conference (DCAS) 2018 Nov 12 (pp. 1-6). IEEE. 

[12] Indiveri G, Liu SC. Memory and information processing in 
neuromorphic systems. Proceedings of the IEEE. 2015 Jul 15; 
103(8): 1379-97. 

[13] Lu K, Li Y, He WF, Chen J, Zhou YX, Duan N, Jin MM, Gu W, 
Xue KH, Sun HJ, Miao XS. Diverse spike-timing-dependent 
plasticity based on multilevel HfO x memristor for neuromorphic 
computing. Applied Physics A. 2018 Jun 1; 124(6): 438. 

[14] Amunts K, Ebell C, Muller J, Telefont M, Knoll A, Lippert T. The 
human brain project: creating a European research infrastructure 
to decode the human brain. Neuron. 2016 Nov 2; 92(3): 574-81. 

[15] Yin D, Chen X, Zeljic K, Zhan Y, Shen X, Yan G, Wang Z. A 
graph representation of functional diversity of brain regions. Brain 
and behavior. 2019 Sep 1. 

[16] Ho TC, Dennis EL, Thompson PM, Gotlib IH. Network-based 
approaches to examining stress in the adolescent brain. 
Neurobiology of stress. 2018 Feb 1; 8: 147-57. 

[17] Kopetzky S, Butz-Ostendorf M. From matrices to knowledge: 
Using semantic networks to annotate the connectome. Frontiers in 
neuroanatomy. 2018; 12: 111. 

[18] Tadić B, Andjelković M, Melnik R. functional Geometry of 
Human connectomes. Scientific reports. 2019 Aug 19; 9(1): 1-2. 

[19] Schuecker J, Schmidt M, van Albada SJ, Diesmann M, Helias M. 
Fundamental activity constraints lead to specific interpretations of 
the connectome. PLoS computational biology. 2017 Feb 1; 13(2): 
e1005179. 

[20] Smith SM, Vidaurre D, Alfaro-Almagro F, Nichols TE, Miller KL. 
Estimation of brain age delta from brain imaging. NeuroImage. 
2019 Jun 12. 

[21] Nazempour R, Liu C, Chen Y, Ma C, Sheng X. Performance 
evaluation of an implantable sensor for deep brain imaging: an 
analytical investigation. Optical Materials Express. 2019 Sep 1; 
9(9): 3729-37. 

[22] Song M, Zhang Y, Cui Y, Yang Y, Jiang T. Brain network studies 
in chronic disorders of consciousness: advances and perspectives. 
Neuroscience bulletin. 2018 Aug 1;34(4):592-604. 

[23] Song C, Liu B, Liu C, Li H, Chen Y. Design techniques of 
eNVM-enabled neuromorphic computing systems. In2016 IEEE 
34th International Conference on Computer Design (ICCD) 2016 
Oct 2 (pp. 674-677). IEEE. 

[24] Sayyaparaju S, Amer S, Rose GS. A bi-memristor synapse with 
spike-timing-dependent plasticity for on-chip learning in 
memristive neuromorphic systems. In2018 19th International 
Symposium on Quality Electronic Design (ISQED) 2018 Mar 13 
(pp. 69-74). IEEE. 

[25] Chakraborty I, Saha G, Sengupta A, Roy K. Toward fast neural 
computing using all-photonic phase change spiking neurons. 
Scientific reports. 2018 Aug 28; 8(1): 12980. 

[26] Kim D, Byun W, Ku Y, Kim JH. High-Speed Visual Target 
Identification for Low-Cost Wearable Brain-Computer Interfaces. 
IEEE Access. 2019 Apr 24; 7: 55169-79. 

[27] Kim GH, Kim K, Lee E, An T, Choi W, Lim G, Shin JH. Recent 
progress on microelectrodes in neural interfaces. Materials. 2018 
Oct; 11(10): 1995. 

[28] Bing Z, Meschede C, Röhrbein F, Huang K, Knoll AC. A survey 
of robotics control based on learning-inspired spiking neural 
networks. Frontiers in neurorobotics. 2018 Jul 6; 12: 35. 

[29] Li J, Li Z, Chen F, Bicchi A, Sun Y, Fukuda T. Combined Sensing, 
Cognition, Learning and Control to Developing Future Neuro-
Robotics Systems: A Survey. IEEE Transactions on Cognitive and 
Developmental Systems. 2019 Feb 5. 

[30] Wei F, Yin C, Zheng J, Zhan Z, Yao L. Rise of cyborg microrobot: 
different story for different configuration. IET nanobiotechnology. 
2019 Jun 6; 13(7): 651-64. 

[31] Gonçalves CP. Quantum Robotics, Neural Networks and the 
Quantum Force Interpretation. Neural Networks and the Quantum 
Force Interpretation (September 5, 2018). 2018 Sep 5. 

[32] Reinares-Lara E, Olarte-Pascual C, Pelegrín-Borondo J. Do you 
want to be a cyborg? The moderating effect of ethics on neural 
implant acceptance. Computers in Human Behavior. 2018 Aug 1; 
85: 43-53. 

 

 

© The Author(s) 2019. This article is an open access article distributed under the terms and conditions of the Creative Commons 
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 
 


