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Abstract  This paper presents a systematic two-layer approach for detecting DNS over HTTPS (DoH) traffic and 
distinguishing Benign-DoH traffic from Malicious-DoH traffic using six machine learning algorithms. The 
capability of machine learning classifiers is evaluated considering their accuracy, precision, recall, and F-score, 
confusion matrices, ROC curves, and feature importance. The results show that LGBM and XGBoost algorithms 
outperform the other algorithms in almost all the classification metrics reaching the maximum accuracy of 100% in 
the classification tasks of layers 1 and 2. LGBM algorithms only misclassified one DoH traffic test as non-DoH out 
of 4000 test datasets. It has also found that out of 34 features extracted from the CIRA-CIC-DoHBrw-2020 dataset, 
SourceIP is the critical feature for classifying DoH traffic from non-DoH traffic in layer one followed by 
DestinationIP feature. However, only DestinationIP is an important feature for LGBM and gradient boosting 
algorithms when classifying Benign-DoH from Malicious-DoH traffic in layer 2. 
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1. Introduction 

Domain Name System (DNS) was introduced based on 
the User Datagram Protocol (UDP), which is an unreliable 
delivery protocol. The security of DNS design was 
sufficient to satisfy the needs of the Internet at that point 
in time. However, providing a name to address mapping 
services for the chain of Internet connectivity makes the 
approach vulnerable network protocols for today’s internet 
traffic [1,2]. Cyber-attacks are considered as a new remote 
weapon [3,4] targeting critical infrastructures such as a 
presidential campaign [5], a nuclear program [6], government 
personnel data [7], and software providers [8]. It is vital to 
distinguish harmful and normal traffics while using the 
internet network efficiently. Securing the DNS system 
from any unauthorized access is critically important for 
the operation of private networks and the Internet. As 
hackers use sophisticated methodologies to attack the 
DNS requests and responses, DNS over HTTPS protocol 
is introduced by encrypting DNS queries and transmitting 
them in a covert channel. The approach enhances privacy 
and overcomes some of the DNS vulnerabilities, such as 
man-in-the-middle attacks. 

An Intrusion Detection System (IDS) [9] plays  
an important role in monitoring the traffic of  
internet-connected devices and detect attacks for DoH 
traffic in a network topology. Intrusion detection was 
described as “the process of monitoring the events 

occurring in a computer system or network and analyzing 
them for signs of intrusions, defined as attempts to 
compromise the confidentiality, integrity, availability, or 
to bypass the security mechanisms of a computer or 
network” [10]. IDS is the most critical defense tool against 
the sophisticated and ever-growing network attacks. 
Different IDS systems have been developed to detect  
and distinguish malicious or normal traffics [9,11,12]. 
Machine learning algorithms [13] have been employed for 
attack detection such as naive Bayes [14], neural network 
regression [15], support vector machine [16], principal 
component analysis [17], and random forest [18]. 

In this paper, a systematic approach is proposed to 
evaluate the capability of six machine learning algorithms 
to be employed for analyzing, testing, and evaluating DoH 
traffic in covert channels and tunnels. This research 
focuses on time-series classifiers to detect and characterize 
DoH traffic in a two-layered machine learning approach 
that deploys DoH within an application and distinguish 
benign and malicious DoH traffic. Recently, Canadian 
Institute for Cybersecurity (CIC) has released a  
CIRA-CIC-DoHBrw-2020 dataset [19] that includes the 
implementation of DoH protocol within an application 
using five different browsers and tools and four servers to 
capture Benign-DoH, Malicious-DoH, and non-DoH 
traffic. In the two-layered approach used to capture benign 
and malicious DoH traffic along with non-DoH traffic, 
layer one is used to classify DoH traffic from non-DoH 
traffic, and layer 2 is used to characterize Benign-DoH 
from Malicious-DoH traffic. Different machine learning 
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classifiers are evaluated for the task of distinguishing the 
benign and malicious DoH traffic along with non-DoH 
traffic. 

The paper uses ML models in the IBM platform known 
as Auto AI [20] to identify the best type of model for the 
given data and efficiently compare the performance of ML 
models. Auto AI was described as “a suite of algorithms 
and feature transformations to automatically engineer new, 
high-value features for a given dataset” [21]. The 
performance of ML models for specific training datasets is 
subjected to the experience of the data scientists in tuning 
complex network parameters. The use of Auto AI ensures 
that the ML process generates the most accurate and 
optimal predictive results that effectively scales with time 
and resources. Several supervised classification algorithms 
such as Decision Tree Classifier [22], Extremely randomized 
Trees (Extra Trees) Classifier [23], Gradient Boosting 
Classifier [24], XGBoost (XGB) [25], Light Gradient 
Boosting Machine (LGBM) Classifier [26], and Random 
Forest Classifier [27]. Boosting makes a classifier strongly 
correlated with the true classification. The main objective 
of this research is to evaluate the classifiers in capturing 
benign and malicious DoH traffic as well as to detect and 
characterize DoH traffic in the two-layered ML approach. 
The models are evaluated using performance metrics such 
as detection accuracy, precision, recall, and F-score. 

The rest of the paper is organized as follows. An 
overview of the CIRA-CIC-DoHBrw-2020 dataset, training 
procedure and machine learning models are presented in 
Section 2. Section 3 discusses the performance of machine 
learning-based attack detectors, including the relative 
importance of the features for each model and their 
performance considering precision, recall, F-score, sensitivity, 
and specificity. Section 4 discusses the comparison of  
the classifiers in classifying DoH traffic from non-DoH 
traffic in layer one and characterizing Benign-DoH  
from Malicious-DoH traffic in layer 2. The paper is 
summarized with some conclusions in section 5. 

2. Network Data Collection and Training 
Process 

Raw data for training ML models are adopted from  
the CIRA-CIC-DoHBrw-2020 dataset [19] that contains 
benign and malicious DoH traffic along with non-DoH 
traffic. Non-DoH traffics generated by accessing a website 
that uses HTTPS protocol and labels as non-DoH traffic 
and benign-DoH traffics using the same technique by 
browsing the web with Mozilla Firefox and Google 
Chrome. For generating malicious-DoH traffics, DNS 
tunneling tools such as dns2tcp, DNSCat2, and Iodine are 
used, which can create tunnels of encrypted data to send 
TCP traffic encapsulated in DNS queries using TLS-
encrypted HTTPS requests to special DoH servers. To 
create a new representation of datasets, the dimensionality 
of data is reduced by a notion of packet clumps that 
defines as a sequence of one or more consecutive packets 
of a network flow. Figure 1(a) shows the network diagram 
used to capture the traffic for the CIRA-CIC-DoHBrw-
2020 datasets [19]. For pre-processing and training the 
classifiers, the non-DoH HTTPS and benign DoH are 
captured using normal web browsing activities and 

malicious DoH using a combination of tools used to create 
DoH tunnels. A subset of CIRA-CIC-DoHBrw-2020 
dataset containing 20,000 traffic from each class is taken 
to train and optimize the ML models, and finally, 15% of 
this data is used to evaluate the performance of classifiers 
in two-layer topology [19]. 

 
Figure 1. (a) Training procedure of intrusion detection including data 
preprocessing, training, and optimizing the training algorithms, 
deployment of ML-based classifiers, and testing of the model to extract 
the classification performance metrics. (b) The network topology used to 
capture the traffic datasets, including benign and malicious DoH traffic 
along with non-DoH traffic 

TCPDUMP is used to capture the traffic between the 
DoH proxy and the DoH server. A DoH traffic flow is 
generated and analyzed for anomaly and attack detection 
and characterization. Different DoH tunneling scenarios 
are simulated, and the resulting HTTPS traffics is captured. 
In the simulation, the clients were run on ten servers 
simultaneously that are connected to a DNS nameserver. 
Adguard, Cloudflare, Google, and Quad9 are used as a 
DoH Server, and Iodine, DNS2TCP, and DNScat2 are 
used as a DNS tunneling tool. The delay between sending 
requests and DNS record types is created using tunneling 
client and server configurations. To diversify the dataset, 
the transmission rate is changed by a random value 
between 100 B/s to 1100 B/s. The statistical and  
time-series features of the captured PCAP files are 
extracted by the network traffic analyzer known as 
CICFlowMeter [28] in Python. The generated dataset is 
stored in a CSV file as output that labeled flow-wise based 
on the IP addresses of the servers in the network diagram. 
Table 1 lists the 34 captured statistical traffic features. 

The procedure to train ML-based models to detect 
attacks from the network traffic is shown in Figure 1(b). 
The ML algorithms need to be kept generic so that a 
trained algorithm can predict an unseen instance correctly. 
As such, the available dataset is split into training and test 
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dataset where the algorithm is trained using a training 
dataset with known attack labels, and a test dataset is used 
to evaluate the model performance in predicting the attack 
labels. A confusion matrix is generated using the number 
of correct predictions on the test dataset to find the actual 
class label against the predicted class label for each 
category and to extract the classification metrics. 

Figure 2 shows the training progress pipelines based on 
six machine learning algorithms: decision tree classifier, 
extra trees classifier, gradient boosting classifier, LGBM 
classifier, XGB classifier, and random forest classifier. 
For each of these six ML algorithms, AutoAI generates 
the following pipelines: automated model selection 
(Pipeline 1), hyperparameter optimization (Pipeline 2), 
automated feature engineering (Pipeline 3), hyperparameter 
optimization (Pipeline 4). The Hyper-parameter optimization 
(HPO) process includes finding a set of optimal parameters 
for the learning procedure to enable fast convergence to a 
better performing solution. To achieve the most accurate 
detection of benign and malicious DoH traffic and the 
characterization of DoH traffic in the two-layered ML 
approach, the extracted features are equally scaled to 
reduce ML bias, and the raw data is transformed into the 
combination of features that best represents the intrusion 
detection problem. The models use transfer learning (TL), 
in which the knowledge gained while solving one problem 
is applied to a different but related problem. The approach 
extracts existing knowledge learned from one environment 
to solve new problems. The pre-trained models take 
advantage of training with a lower amount of data for the 
new problem and significantly shortens the training 
procedure. 

Table 1. List of the 34 statistical features extracted from captured 
traffic 

No. Feature 
1 SourceIP 
2 DestinationIP 
3 SourcePort 
4 DestinationPort 
5 TimeStamp 
6 Duration 
7 FlowBytesSent 
8 FlowSentRate 
9 FlowBytesReceived 

10 FlowReceivedRate 
11 PacketLengthVariance 
12 PacketLengthStandardDeviation 
13 PacketLengthMean 
14 PacketLengthMedian 
15 PacketLengthMode 
16 PacketLengthSkewFromMedian 
17 PacketLengthSkewFromMode 
18 PacketLengthCoefficientofVariation 
19 PacketTimeVariance 
20 PacketTimeStandardDeviation 
21 PacketTimeMean 
22 PacketTimeMedian 
23 PacketTimeMode 
24 PacketTimeSkewFromMedian 
25 PacketTimeSkewFromMode 
26 PacketTimeCoefficientofVariation 
27 ResponseTimeTimeVariance 
28 ResponseTimeTimeStandardDeviation 
29 ResponseTimeTimeMean 
30 ResponseTimeTimeMedian 
31 ResponseTimeTimeMode 
32 ResponseTimeTimeSkewFromMedian 
33 ResponseTimeTimeSkewFromMode 
34 ResponseTimeTimeCoefficientofVariation 

 
Figure 2. Training progress pipelines for four ML models: XGBoost classifier, random forest classifier, decision tree classifier, and gradient boosting 
classifier 
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3. Results 

The classification metrics of six classification algorithms: 
Decision Tree, Extra Trees, Gradient Boosting, XGBoost, 
Light Gradient Boosting Machine, and Random Forest are 
presented for classifying DoH traffic from non-DoH 
traffic in layer one and characterizing Benign-DoH from 
Malicious-DoH traffic in layer 2. For each algorithm, the 
confusion matrix is generated using the number of correct 
predictions on the test dataset to find the actual class label 
against the predicted class label for each category and  
to extract the classification metrics. The classification 
metrics include accuracy, average precision, F1-score, 
precision, recall, and ROC AUC. The accuracy is 
calculated as a fraction of true positive among all the 
positive’s recalled and can be viewed as a measure of a 
classifier’s exactness. Precision is the fraction of relevant 
instances among the retrieved instances, while recall is the 
fraction of true positives among all the true events and can 
be viewed as a measure of a classifier’s completeness. The 
F-score considers both precision and recall as the 
harmonic mean of the Precision and Recall indicating  
the worst accuracy when it becomes 0, while the best 
accuracy corresponds to 1. Cross-validation and holdout 
are reported for each evaluation measure in classifying 
DoH traffic from non-DoH traffic in layer one and 
characterizing Benign-DoH from Malicious-DoH traffic  
in layer 2. Cross-validation provides the model the 
opportunity to train on multiple train-test splits resulting 
in a better indication of how well your model will perform 
on unseen data while holdout is dependent on just one 
train-test split. The ROC curve is depicted for each 
algorithm as a fundamental tool used for diagnostic test 
evaluation providing measures of overall predictive 
accuracy of the models. The curve depicts the proportion 
of positive outcomes that are correctly predicted, also 
known as the true positive rate (i.e., sensitivity), against 
the proportion of negative outcomes that are falsely 
predicted to be positive, also known as the false positive 
rate (i.e., 1-Specificity). The sensitivity is a measure of a 
classifier’s completeness, and the specificity measures the 
proportion of correctly identified negatives. The area 
under the ROC curve (ROC AUC) represents the measure 
of separability, demonstrating how much models are 
capable of distinguishing between classes. ROC curves 
can be used to evaluate the performance of the four 
classification models. 

3.1. Decision Tree Algorithm 
Decision trees use a series of sequential steps to decide 

to split a node into two or more sub-nodes based on 
probabilities, costs, or other consequences of making a 
particular decision. The algorithm splits the nodes on all 
available variables and then selects the split that results in 
most homogeneous sub-nodes. Figure 3(a) shows the 
accuracy, average precision, F1-score, precision, recall, 
and area under the receiver operating characteristic (ROC) 
curve (or ROC AUC) of the algorithms in classifying  
DoH traffic from non-DoH traffic in layer one and 
characterizing Benign-DoH from Malicious-DoH traffic in 
layer 2. For the decision tree algorithm, all of these 

measures for cross-validation and handout scores of layer 
one are calculated as 99.8% and 99.9%, respectively. All 
the measures of layer 2 for both cross-validation and 
handout scores are calculated as 100%. Figure 3(b) shows 
the confusion matrix of the algorithm. It can be observed 
that, out of almost 4000 test data, only 4 and 1 samples are 
misclassified in layers 1 and 2, respectively. Figure 3(c) 
shows the ROC curve of layers 1 and 2. The ROC curve 
of the algorithm passes through the upper left corner, 
indicating very high sensitivity and specificity with no 
overlap between the classes. Figure 3(d) shows the 
relative importance of the first six features of the 
algorithm in classifying DoH traffic from non-DoH traffic 
in layer one and characterizing Benign-DoH from 
Malicious-DoH traffic in layer 2. The importance of the 
features is extracted to ensure the highest accuracy of the 
algorithm. Correlation between a pair of features is 
analyzed to eliminate features that contribute the same 
information about the data. The SourceIP is the key 
feature in layer 1 with the feature importance of 0.67, 
while the most important feature for characterizing 
Benign-DoH from Malicious-DoH traffic in layer 2 is for 
a new feature engineered as tan (square (Packet Length 
Mode)). 

3.2. Extra Tree Algorithm 
Extra Trees Classifier (or Extremely Randomized Trees 

Classifier) is a type of ensemble learning technique that 
works by creating many unpruned decision trees from the 
training dataset. The algorithm aggregates the results of 
multiple de-correlated decision trees to generate the output 
of the classification algorithm. Predictions are made  
by using majority voting in the case of classification. 
Figure 4(a) shows the accuracy, average precision,  
F1-score, precision, recall, and ROC AUC of the extra tree 
algorithms in classifying DoH traffic from non-DoH 
traffic in layer one and characterizing Benign-DoH from 
Malicious-DoH traffic in layer 2. For this algorithm,  
all the measures for cross-validation and handout  
scores of layer one are calculated above 99.4% and  
99.9%, respectively. All the measures of layer 2 for  
cross-validation and handout scores are calculated above 
99.9%. Figure 4(b) shows the confusion matrix of the 
algorithm. It can be observed that, out of almost 4000 test 
data, only 3 and 2 samples are misclassified in layers 1 
and 2, respectively. Figure 4(c) shows the ROC curve of 
layers 1 and 2. The ROC curve of the algorithm passes 
through the upper left corner, indicating very high 
sensitivity and specificity with no overlap between the 
classes. Figure 4(d) shows the relative importance of  
the first six features of the algorithm in classifying  
DoH traffic from non-DoH traffic in layer one and 
characterizing Benign-DoH from Malicious-DoH traffic in 
layer 2. The importance of the features is extracted, and 
the correlation between a pair of features is analyzed to 
eliminate features that contribute the same information 
about the data and maximize the accuracy of the algorithm. 
The most important features of the algorithm are 
calculated by producing the DestinationIP and SourceIP 
for layer one and tan(square(PacketLengthMode)) for 
layer 2. 
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Figure 3. (a) Evaluation measures, (b) confusion matrices, (c) ROC curve, and (d) feature importance of Decision Tree algorithm in classifying DoH 
traffic from non-DoH traffic in layer one and characterizing Benign-DoH from Malicious-DoH traffic in layer 2 

 
Figure 4. (a) Evaluation measures, (b) confusion matrices, (c) ROC curve, and (d) feature importance of Decision Tree algorithm in classifying DoH 
traffic from non-DoH traffic in layer one and characterizing Benign-DoH from Malicious-DoH traffic in layer 2 

3.3. Gradient Boosting algorithm 
Gradient boosting corrects the shortcomings of existing 

weak learners in random forests by building one tree at a 

time. The algorithm also combines results along the way, 
improving the random forests algorithm that combines the 
results at the end of the process. Boosting makes a strong 
learner by optimizing step for every new tree, allowing the 
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classification model to generate less False Alarms and 
higher accuracy of classification. Figure 5(a) shows the 
accuracy, average precision, F1-score, precision, recall, 
and ROC AUC of the gradient boosting algorithms in 
classifying DoH traffic from non-DoH traffic in layer one 
and characterizing Benign-DoH from Malicious-DoH 
traffic in layer 2. For this algorithm, all the measures for 
cross-validation and handout scores of layer one are 
calculated above 99.8% and 99.9%, respectively. All the 
measures of layer 2 for cross-validation and handout 
scores are calculated as 100%, except the precision of the 
cross-validation score, which is 99.9%. Figure 5(b) shows 
the confusion matrix of the algorithm. It can be observed 
that, out of almost 4000 test data, only 2 and 1 samples are 
misclassified in layers 1 and 2, respectively. Figure 5(c) 
shows the ROC curve of layers 1 and 2. The ROC curve 
of the algorithm passes through the upper left corner, 
indicating very high sensitivity and specificity with no 
overlap between the classes. Figure 5(d) shows the 
relative importance of the first six features of the 
algorithm in classifying DoH traffic from non-DoH  
traffic in layer 1 and characterizing Benign-DoH from 
Malicious-DoH traffic in layer 2. The most important 
features of the algorithm are calculated 0.68 for SourceIP 
in layer 1 and new feature is generated in layer 2 as 
tan(DestinationIP) in layer 2. 

3.4. LGBM algorithm 
LGBM is a light gradient boosting framework that has 

faster execution time than the XGBoost algorithm and 
outperforms it in training speed and the dataset sizes it can 
handle. Similarly, boosting makes a strong learner by 
optimizing step for every new tree, allowing the 
classification model to generate less False Alarms and 
higher accuracy of classification. Figure 6(a) shows the 
accuracy, average precision, F1-score, precision, recall, 
and ROC AUC of the LGBM algorithms in classifying 
DoH traffic from non-DoH traffic in layer one and 
characterizing Benign-DoH from Malicious-DoH traffic  
in layer 2. For this algorithm, all the measures for  
both cross-validation and handout scores of layer one  
are calculated 100% except precision, which is 99.9%. 
Figure 6(b) shows the confusion matrix of the algorithm. 
It can be observed that, out of almost 4000 test data, only 
1 sample is misclassified in layer one and all test dates are 
correctly classified in layer 2. Figure 6(c) shows the ROC 
curve of layers 1 and 2. The ROC curve of the algorithm 
passes through the upper left corner, indicating very high 
sensitivity and specificity without overlap between the 
classes. Figure 6(d) shows the relative importance of  
the first six features of the algorithm in classifying  
DoH traffic from non-DoH traffic in layer one and 
characterizing Benign-DoH from Malicious-DoH traffic in 
layer 2. The most important features of the algorithm are 
DestinationIP in layers 1 and 2 that have been calculated 
as 0.28 and 0.06, respectively. 

3.5. XGBoost algorithm 
XGBoost algorithm is a strong classifier because of its 

regularization aspect that avoids data overfitting problems. 
The optimizing step for every new tree that attaches 

reduces false alarms further and improve the classification 
accuracy. The approach makes the classifier fast to deal 
with the system overwhelmed by a float of attacks 
effectively. Thus, the XGBoost algorithm outperforms 
many existing models demonstrating robust IDS to deal 
with the majority of the attacks in a real-world network. 
Figure 7(a) shows the accuracy, average precision, F1-
score, precision, recall, and ROC AUC of the XGBoost 
algorithms in classifying DoH traffic from non-DoH 
traffic in layer one and characterizing Benign-DoH from 
Malicious-DoH traffic in layer 2. For this algorithm, all 
the measures for cross-validation and handout scores of 
layer one are calculated 100% except precision, which is 
99.9%. Figure 7(b) shows the confusion matrix of the 
XGBoost algorithm. It can be observed that, out of about 
4000 test data, only two samples are misclassified in each 
layer. Figure 7(c) shows the ROC curve of layers 1 and 2. 
The ROC curve of the algorithm passes through the upper 
left corner, indicating very high sensitivity and specificity 
without overlap between the classes. Figure 7(d) shows 
the relative importance of the first six features of the 
XGBoost algorithm in classifying DoH traffic from non-
DoH traffic in layer one and characterizing Benign-DoH 
from Malicious-DoH traffic in layer 2. The two most 
important features of the XGBoost algorithm in layer 1 are 
PacketLengthMedian and SourceIP that have been 
calculated as 0.47 and 0.34, respectively. However, the 
most important feature of the XGBoost algorithm in layer 
2 is tan(PacketLengthSkewFromMode) that has been 
calculated as 0.51. 

3.6. Random Forest Algorithm 
Random forests are an ensemble algorithm that has 

many trees combined using averages or majority rule at 
the end of the process. From a randomly selected subset of 
the training dataset, a random forest classifier creates a set 
of decision trees and then aggregates the votes from 
different decision trees to make decisions about the final 
class of the test object. Figure 8(a) shows the accuracy, 
average precision, F1-score, precision, recall, and ROC 
AUC of the random forest algorithms in classifying  
DoH traffic from non-DoH traffic in layer one and 
characterizing Benign-DoH from Malicious-DoH traffic  
in layer 2. For this algorithm, all the measures for  
cross-validation and holdout scores of layer one are 
calculated above 99.7% and 99.9%, respectively. Figure 
8(b) shows the confusion matrix of the random forests 
algorithm. It can be observed that, out of about 4000 test 
data, only four test samples are misclassified in layer one 
and two test data are misclassified in layer 2. Figure 8(c) 
shows the ROC curve of the layer 1 and 2 that passes 
through the upper left corner indicating the classes have 
no overlap. Figure 8(d) shows the relative importance of 
the first six features of the random forests algorithm in 
classifying DoH traffic from non-DoH traffic in layer one 
and characterizing Benign-DoH from Malicious-DoH 
traffic in layer 2. The most important feature of the 
random forests algorithm in layer 1 is the product of 
DestinationIP and SourceIP that has been calculated as 
0.25. The most important feature of the algorithm in layer 
2 is a new feature engineered as tan(PacketLengthMode) 
that has been calculated as 0.54. 
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Figure 5. (a) Evaluation measures, (b) confusion matrices, (c) ROC curve, and (d) feature importance of Gradient Boosting algorithm in classifying 
DoH traffic from non-DoH traffic in layer one and characterizing Benign-DoH from Malicious-DoH traffic in layer 2 

 
Figure 6. (a) Evaluation measures, (b) confusion matrices, (c) ROC curve, and (d) feature importance of LGBM algorithm in classifying DoH traffic 
from non-DoH traffic in layer one and characterizing Benign-DoH from Malicious-DoH traffic in layer 2 
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Figure 7. (a) Evaluation measures, (b) confusion matrices, (c) ROC curve, and (d) feature importance of XGBoost algorithm in classifying DoH traffic 
from non-DoH traffic in layer one and characterizing Benign-DoH from Malicious-DoH traffic in layer 2 

 
Figure 8. (a) Evaluation measures, (b) confusion matrices, (c) ROC curve, and (d) feature importance of Random Forest algorithm in classifying DoH 
traffic from non-DoH traffic in layer one and characterizing Benign-DoH from Malicious-DoH traffic in layer 2 

4. Discussion 
Six classification algorithms: Decision Tree, Extra Trees, 

Gradient Boosting, XGBoost, Light Gradient Boosting 

Machine, and Random Forest are evaluated for classifying 
DoH traffic from non-DoH traffic in layer one and 
characterizing Benign-DoH from Malicious-DoH traffic in 
layer 2. LGBM and XGBoost algorithms outperform the 
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other algorithms in almost all the classification metrics 
reaching the maximum accuracy of 100% in classifying 
DoH traffic from non-DoH traffic in layer 1. The cross-
validation precision of these algorithms is calculated as 
99.9%, which is larger than the other four algorithms. 
However, the handout precisions of LGBM and XGBoost 
algorithms are calculated as 99.9%, which are the same as 
the other four algorithms. The weakest performance 
results in 99.4% in calculating the cross-validation 
classification metrics of extra tree algorithms in classifying 
DoH traffic from non-DoH traffic in layer 1. A slightly 
lower precision and recall of extra tree algorithms indicate 
a few false positives and a few false negatives. 

For the six classification algorithms, confusion matrices 
are generated that indicate the number of correct predictions 
on the test dataset to find the actual class label against the 
predicted class label for each category. For classifying 
DoH traffic from non-DoH traffic in layer 1, 4000 test 
datasets are used to evaluate each algorithm. LGBM 
algorithms outperform the other algorithms as only 1 DoH 
test data is predicted as non-DoH. The lowest performance 
belongs to the decision tree algorithm as two DoH test 
data is predicted as non-DoH, and non-DoH test data is 
predicted as DoH. For classifying Benign-DoH from 
Malicious-DoH traffic in layer 2, LGBM algorithms 
outperform the other algorithms as all test dates  
are classified correctly. Extra tree algorithm has the 
weakest performance in layer two by misclassifying two 
malicious-DoH traffic as benign-DoH. Both XGBoost  
and random forest algorithms perform the same by 
misclassifying one malicious-DoH traffic as benign-DoH, 
and one benign-DoH traffic as malicious-DoH. 

For the six classification algorithms, the ROC curves 
are generated that indicate the overlap between the classes. 
The ROC curves of classifying DoH traffic from non-DoH 
traffic in layer 1 passes through the upper left corner has 
100% sensitivity and 100% specificity for the decision 
tree, extra tree, and random forest classifiers, indicating a 
negligible overlap between the classes. On the other hand, 
XGBoost classifier has a minor overlap between classes of 
DoH and non-DoH traffics. For classifying Benign-DoH 
from Malicious-DoH traffic in layer 2, the ROC curves of 
all algorithms are close to the upper left corner indicating 
high sensitivity and specificity, as well as the accuracy of 
the classifiers. The perfect area under the ROC curve is 
built on the truth value of ‘1’ and ‘0’, resulting in the 
angle-shaped elbow seen in the ROC curve. 

For the six classification algorithms, the six most important 
features are generated to understand the significance of the 
signatures in data collected for classifications in layers 1 
and 2. DestinationIP and SourceIP are the key features for 
classifying DoH traffic from non-DoH traffic in layer 1. 
SourceIP is the most important feature in the decision tree 
algorithm and gradient boosting algorithm, the second 
most important feature in the XGBoost algorithm, and the 
engineered SourceIP is the most important feature in the 
extra trees algorithm and random forests algorithm. For 
layer one classification, DestinationIP is also an important 
feature as this feature is the most important feature in 
LGBM algorithms, the second most important feature in 
the decision tree algorithm, and its engineered version are 
the most important feature in extra trees algorithm and 
random forests algorithms. From the weight of the 

features, it can be understood that the average importance 
of SourceIP and DestinationIP for layer one models are 
roughly 0.42 and 0.21, respectively. Packet Length Median 
is the only important feature of the XGBoost algorithm. 
For classifying Benign-DoH from Malicious-DoH traffic 
in layer 2, SourceIP is not an important feature, while 
DestinationIP is still a key feature for LGBM and gradient 
boosting algorithms. For layer two classification, tan 
(Packet Length Mode) is the most important feature for 
three algorithms of the decision tree, extra trees, and 
random forests, with the average feature importance  
of 0.54. Other than Packet Length Mode, tan (Packet 
Length Skew From Mode) is also important for layer 2 
classification using the XGBoost algorithm. 

5. Conclusion 

This paper has introduced a systematic approach to 
evaluating the capability of six machine learning algorithms 
to be employed for analyzing, testing, and evaluating DoH 
traffic in two-layered machine learning models. DoH 
traffic is distinguished from non-DoH traffic in layer 1, 
and Benign-DoH traffic is separated from Malicious-DoH 
traffic in layer 2. Six different machine learning models 
are used in two layers for distinguishing the benign and 
malicious DoH traffic along with non-DoH traffic, and the 
performance of ML models are compared considering 
their classification performance such as accuracy, precision, 
recall, and F-score, confusion matrices, ROC curves, and 
feature importance. The results show that LGBM and 
XGBoost algorithms outperform the other algorithms in 
almost all the classification metrics reaching the maximum 
accuracy of 100% in the classification tasks of layers 1 
and 2. The confusion matrix of LGBM algorithms shows 
only 1 DoH test data is predicted as non-DoH out of 4000 
test datasets. For most of the algorithms, SourceIP is 
found as the key feature for classifying DoH traffic from 
non-DoH traffic in layer one, followed by DestinationIP 
feature. However, SourceIP is not an important feature for 
classifying Benign-DoH from Malicious-DoH traffic in 
layer two and DestinationIP is an important feature only 
for two algorithms of LGBM and gradient boosting. 
Overall, besides SourceIP and DestinationIP, Packet 
Length Median, Packet Length Mode, and Packet Length 
Skew From Mode are essential features for the proposed 
two-layer approach out of 34 features extracted from the 
CIRA-CIC-DoHBrw-2020 dataset. 
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