
Journal of Computer Sciences and Applications, 2020, Vol. 8, No. 2, 56-61
Available online at http://pubs.sciepub.com/jcsa/8/2/3
Published by Science and Education Publishing
DOI:10.12691/jcsa-8-2-3

Dynamic Directional NxN Chart
Based Text Based Substitution Cipher

Michael M Kangethe*, Elisha Odira Abade

School of Computing and Informatics, University of Nairobi, Nairobi, Kenya
*Corresponding author: mich01mk@gmail.com

Received August 11, 2020; Revised September 14, 2020; Accepted September 23, 2020

Abstract The need for simple secure substitution encryption algorithms has risen due to complexities derived
from current encryption algorithms, which over-complicate the process through many sub-processes and consume
more space than necessary. This also creates the need for a secure string encryption approach that can also be
applied using a simple pen and paper to encrypt and decrypt messages between each other. In this paper we present a
technique based on a Non-Deterministic directional NxN chart-based encryption cipher as a solution to this problem.
This will be achieved by using a 2-dimensional N by N chart as the key while using a dynamically selected
directional approach to generate both the cipher and plain-text.

Keywords: encryption, decryption, ascii, strings, plain text, cipher text, multi dimension, hex, non-deterministic,
random selection, text cipher, key chart, IV (Initialization Vector), XY (Horizontal/Row, Vertical/Column)

Cite This Article: Michael M Kangethe, and Elisha Odira Abade, “Dynamic Directional NxN Chart Based
Text Based Substitution Cipher.” Journal of Computer Sciences and Applications, vol. 8, no. 2 (2020): 56-61.
doi: 10.12691/jcsa-8-2-3.

1. Introduction

Cryptography is the practice and method for secure
communication in the presence of third parties called
adversaries. (Tanmoy and Ramkrishna, 2015)

Implementation of simple secure ciphers for text-based
communication has become a necessity for efficiency
of communication unlike other digital forms of
communication. This has led to the development of
several text-based ciphers based for this purpose.

The development of a randomized substitution cipher
enhances the security of the cipher by obscuring the
process of encryption and decryption of the data making it
nearly impossible to decipher the data. This paper
demonstrates how randomization can be used as a
principle in substitution ciphers to enhance their security
through the use of directional X, Y chart key-based
character substitution.

2. Background Concept

Substitution is the replacement of one character with
another. By using current text substitution ciphers the
security of the data is usually weaker due to the limited
number of possible representations of the ciphertext based
on the plaintext. This forces cryptographers to build
encryption algorithms that use multiple ciphers together
with the substitution cipher primitive to strengthen the
security of their developed encryption algorithms.

Randomization is a selection method base on pure
chance alone and has been a reliable security concept
when applied to cryptography as it introduces greater
complexities to the process of encryption and decryption.
The current known popular approaches of randomness
apply in the generation of IVs. And recently in the use of
encryption primitives.

Randomized text encryption algorithm proposed
increases the complexity of cryptanalyst to decrypt the
ciphertext and restricts them to break the security of
encoded file. The proposed technique uses random
numbers added to plaintext along with encryption key.
After applying encryption technique, each time same
plaintext will be converted to different ciphertext provided
that encryption key is same or different [3].

Message Based Random Variable Length Key
Encryption Algorithm. Dynamic and message dependent
key generator was created by producing a random number
and it was selected as the size of first chunk. Residual
value of second chunk divided by first chunk
concatenating with first chunk forms the first cipher as an
input for SP-boxes. These processes repeated until whole
message get involved into the last cipher. Encrypted
messages are not equal under different run. Value of
random number should be greater than 35 bits and
plaintext must be at least 7 bits. A padding algorithm was
used for small size messages or big random numbers [4].

Probabilistic Encryption aims to provide a practical
implementation of a probabilistic cipher by extending on
the algorithms by Fuchsbauer, Goldwasser and Micali. We
provide details on designing and implementing the cipher
and further support our understanding by providing a

57 Journal of Computer Sciences and Applications

statistical analysis of our implementation for the key
generation, encryption, and decryption times taken by the
cipher for key sizes of 1024, 2048, and 4096 bits for
varying message spaces of 750, 1500, 3000, and 5000 bits.
The concept of 'inter-bit operating time' is introduced for
the cipher which calculates time elapsed between two
instances of an operation [6].

3. Proposed Algorithm

The main approach to the solution is to create a
substitution Cipher that uses a dynamically Generated Key
Chart with randomly generated substitution values. Then
use the Key Chart to navigate randomly in an X, Y
direction to select the cipher substitution value for each
plaintext character. The process should be reversible thus
one should be able to Encrypt and decrypt the data given
the Key Chart and the Directional sequence as the key.

In the encryption process only, the plaintext will be
needed. The output of the encryption process will be three
things namely:

1. Key Chart
2. Direction Sequence
3. Ciphertext
Both the Key Chart and the Direction Sequence can be

combined to form a single key which will be used to
reverse the encryption process and decrypt the ciphertext
to attain the plaintext.

We assume the plaintext to be encrypted is in
alphanumeric (A-Z,0-9) the first step will be to create a
key chart that will contain the corresponding values of
each character. This key chart will be used for the
encryption and decryption process.

This is represented as mathematical process below:

3.1.1. Encryption Process
Given a 2 Dimension Chart C made of N by N

hexadecimal character space we first get.

 𝑪𝑪{𝒏𝒏,𝒏𝒏} = {𝟎𝟎𝟎𝟎,𝟎𝟎𝟎𝟎 , … ,𝑭𝑭𝑭𝑭,𝑭𝑭𝑭𝑭}

Equation 1: Substitution Chart table Character space
And for each plaintext character pi in the input text P

the output Ei will become:

 []xi
i i

yi

C
E Z p

C
 

=   
 

Equation 2: Substitution formular for each character
in the Plaintext

Where Z is the Random Selection with respect to the
substitution Chart’s X and Y coordinates.

Using the chart as the substitution reference we follow
the below rule to define the encryption process:

 ()(|) .X

Y

C
E P C SZ P

C
  

=   
  

Equation 3: The General Substitution formular for the
Plaintext
Where:
E(P | C) is the Encryption of the plaintext P with respect
to the substitution Chart C.

S is the substitution process
The output will be the ciphertext E and Substitution

process stored as KS.

3.1.2. Decryption Process
Using the generated substitution mapping key from the

process and stored as a key Ks we reverse the process by
using the following process:

 []xi
i I i

yi

C
P KS e

C
 

=   
 

Equation 4: Substitution formular for each character
in the Ciphertext

Where ei is the encrypted character at index i of the
encrypted text E.

Thus, giving us the general formular

 ()(|) X

Y

C
E P C SKS P

C
  

=   
  

Equation 5: The General Reverse Substitution formular
for the Ciphertext

For the purpose of demonstration, the Algorithm will be
described using a real-world example as detailed below

3.2. Example
Using the table below one should be able to encrypt my

message 2341 For demonstration purpose we will use a
small table of only four characters as our Key-space.

Table 1. Example Character Table chart

 1 2 3 4
1 A B C D
2 B C D A
3 C D A B
4 D A B C

The first row and column represent the plain-text mappings.
The data inside the table are the corresponding

substituted representations of the plain-text data items at
each instance.

3.2.1. Key-Chart Requirements
The column items have been placed in reverse unlike

order to the rows so as to eliminate the possibility of
cipher collision which is a case where multiple cipher
approaches will lead to the same plain-text. This has also
been applied at cipher-text key items Ki in the chart
although the order is the same except at each row the item
Ki appears at the Ki-1 with full rotation for the outlying
characters.

3.2.1.1. Note
 The first row will contain a random placement of all

characters from in the alphanumeric set.
 The subsequent rows will contain the same set but

with the characters shifted one position to the left or
right.

 The overflowing keys will be placed in the starting
points and this should follow until the key space
cycle is complete.

 Journal of Computer Sciences and Applications 58

3.2.2. Encryption
Assuming the system selected the second row at

random and the directions selected was H, V, H, V where
H represents the Horizontal direction and V represents the
vertical directions. This can also be represented as V=1
and H=0.

Therefore Using 2341 as our plain-text we encrypt it to
become.

Steps:
 2 will correspond to C [At column 2 and row 3]
 3 will correspond to C [At column 2 and row 3]

since we are selecting the corresponding row id
Vertically,

 4 will correspond to A [At column 4 and row 3]
 And finally, 1 will correspond to C [At column 4

and row 1]
So, the cipher-text 2341 will become CCAC.

3.2.3. Decryption
From the cipher-text above there is enough diffusion to

eliminate its association to the plain-text
To decrypt the same text, we will need the chart and

starting point which is H2 and the decryption process is
represented as H, V, H, V

Therefore, Using CCAC as our cipher-text we Decrypt
it to become.

Steps:
 C will correspond to the Column Key 2[At column

2 and row 3]
 C will correspond to the Row Key 3[At column 2

and row 3]
 A will correspond to the Column Key 4[At column

4 and row 3]
 and finally, C will correspond to the Row 1 Key

2[At column 4 and row 1]
Finally, the plain-text using the same hey and direction

process of CCAC will become 2341.

3.3. The Pseudo Algorithm
Variables
Random_Choices = “X”,”Y”
Direction_Selections[] =null
Cipher-text[] =null

3.3.1. Encryption Function
Function Encrypt():
{
Get Key_Chart,Current_x, Current_y,input_String
For i in input_String

Direction_Selections[i]=GenerateRandomChoice
(“X”,”Y”)

if(Direction_Selections[i] == “X”)
Cipher-text[i] =

Encrypt_Horizontal(Key_Chart,Current_x,Current_y,inpu
t_String[i])
Else

Cipher-text[i] =
Encrypt_Vertical(Key_Chart,Current_x,Current_y,input_
String[i])
}

3.3.2. Decryption Function
Function Decrypt():
{
Get Key_Chart,Current_x,
Current_y,input_String,Direction_Selections[]
For i in input_String

if(Direction_Selections[i] == “X”)
Cipher-text[i] =

Decrypt_Horizontal(Key_Chart,Current_x,Current_y,inpu
t_String[i])

Else
Cipher-text[i] =

Decrypt_Vertical(Key_Chart,Current_x,Current_y,input_
String[i])
}

3.3.3. X AND Y Encryption Functions
function
Encrypt_Horizontal(Key_Chart,Current_x,Current_y,Prev
_Y,Key)
{
For i in Key_Chart:
if(Key_Chart[0][i].equals(Key))
 {
 Current_x =i;
 Current_y=Prev_Y;
 Temp = Key_Chart[Current_y][i];
 break;
 }
Return Temp
}

function
Encrypt_Vertical(Key_Chart,Current_x,Current_y,Prev_Y
,Key)
{
For i in Key_Chart:
if(Key_Chart[i][0].equals(Key))
 {
 Current_x =X;
 Current_y=i;
 Temp = Key_Chart[i][Current_x];
 break;
 }
Return Temp
}

3.3.4. X AND Y Encryption Functions
function :
Decrypt_Vertical(Key_Chart,Current_x,Current_y,Prev_
Y,Key)
{
For i in Key_Chart:
if(Key_Chart[i][Current_x].equals(Key))
 {
 X_pos =Current_x;
 Y_pos=i;
 Temp =Key_Chart[i][0];
 }
Return Temp
}

59 Journal of Computer Sciences and Applications

function
Decrypt_Horizontal(Key_Chart,,Current_y,Prev_Y,Key)
{
For i in Key_Chart:
if(Key_Chart[Current_y][i].equals(Key))
 {
 X_pos =i;
 Y_pos=Current_y;
 Temp =Current_y[0][i];
 }
Return Temp
}

3.4. Security
To determine the algorithms security against brute force

it was necessary to consider in the below factors.

3.4.1. Size of Data N
Key-space this is the Chart of Characters in the cipher

in the PoC ranging from 0-9 and A-Z

 𝑠𝑠 ∈ 𝑆𝑆 ∈ 𝐴𝐴
Complexity is calculated using the below factors:
For a sentence S comprising of characters s0, s1, s2,,

sn-1, sn.
For every si in S complexity is n where n is the size of

data N at each subset.
Thus, the complexity for the string is
Complexity =S2.

3.5. Proof of Security

3.5.1. Crypt-analysis through brute-force of Possible
Matches

Given 4 data items as the plain-text and cipher and 4
Possible Directions and 8 possible starting points we can
use 0 to represent H and 1 to represent V and a binary
table to list the possible outcomes as below.

Assuming we start with the first C in the first row as
our default

Table 2. Possible Plaintext combinations from the Cipher (CCAC)

Possible combinations of the Cipher starting with C in the first row
3 3 1 3
3 3 1 2

3 3 2 2
3 3 2 3
3 4 1 3

3 4 1 2
3 4 2 3

3 4 2 4
2 1 3 1

2 1 3 4
2 1 4 3
2 1 4 2

2 2 3 1
2 2 3 4

2 2 4 3
2 2 4 2

Possible Direction Combinations
0 0 0 0

0 0 0 1
0 0 1 0

0 0 1 1
0 1 0 0
0 1 0 1

0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1
1 0 1 0

1 0 1 1
1 1 0 0

1 1 0 1
1 1 1 0

1 1 1 1

Table 3. Possible Plaintext combinations from the Cipher (CCAC)

Possible combinations of the Cipher starting with C in the Second
row

2 2 4 2
2 2 4 1
2 2 1 4
2 2 1 3
2 3 4 2
2 3 4 1
2 3 1 4
2 3 1 3
3 2 4 2
3 2 4 1
3 2 1 4
3 2 1 3
3 3 4 2
3 3 4 1
3 3 1 4
3 3 1 3

Possible Direction Combinations

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

 Journal of Computer Sciences and Applications 60

Table 4. Possible Plaintext combinations from the Cipher (CCAC)

Possible combinations of the Cipher starting with C in the Third row
1 1 3 1

1 1 3 4
1 1 4 3

1 1 4 2
1 2 3 1
1 2 3 4

1 2 4 3
1 2 4 2

2 1 3 1
2 1 3 1
2 1 4 4

2 1 4 2
2 2 3 1

2 2 3 4
2 2 4 3

2 2 4 2
Possible Direction Combinations

0 0 0 0

0 0 0 1
0 0 1 0

0 0 1 1
0 1 0 0
0 1 0 1

0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1

1 0 1 0
1 0 1 1
1 1 0 0

1 1 0 1
1 1 1 0

1 1 1 1

Table 5. Possible Plaintext combinations from the Cipher (CCAC)

Possible combinations of the Cipher starting with C in the Fourth
row

4 1 2 4
4 1 2 3

4 1 3 2
4 1 3 1

4 4 2 4
4 4 2 3

4 4 3 2
4 4 3 1
1 4 2 4

1 4 2 3
1 4 3 2

1 4 3 1
1 1 2 4
1 1 2 3

1 1 3 2
1 1 3 1

Possible Direction Combinations
0 0 0 0

0 0 0 1
0 0 1 0

0 0 1 1
0 1 0 0
0 1 0 1

0 1 1 0
0 1 1 1

1 0 0 0
1 0 0 1
1 0 1 0

1 0 1 1
1 1 0 0

1 1 0 1
1 1 1 0

1 1 1 1

From the above proof of tables, it is evident that for

each combination of cipher-text there are N2 possible
plain-text options which increases the complexity of
deciphering the text by itself. Where N is the size of the
Cipher/Plain-text.

The correct plain-text from the cipher-text in the table
also appears only once as highlighted in the second table.
Thus, ensuring there won’t be any collisions when
deciphering the data.

4. Assumptions and Limitations of Scope

For the purpose of demonstration, the research and
development of this algorithm focused solely on the
decoded alphanumeric substitution process and not in any
other extended digital data format and encoding or
encryption primitives.

5. Conclusion

In this paper, we proposed an algorithm to encrypt the
data based on random and dynamic Key Chat generation
and substitution. The above system is produces reliable
and stable results. However, the system can be improved
by using Hex values for all types of data encryption.
Keeping this in mind, the algorithm has been designed in a
quite simple manner while focusing on high security.

References
[1] M. A. Murillo-Escobar, F. Abundiz-PÈrez, C. Cruz-Hern·ndez, R.

M. LÛpez-GutiÈrrez. 2014. A novel symmetric text encryption
algorithm based on logistic map.

[2] Mante, Pratik Gajanan, Oswal, Harsh Rajendra, Swain, Debabrata,
Deshpande, Deepali. 2009. A Symmetrical Encryption Technique
for Text Encryption Using Randomized Matrix Based Key
Generation.

[3] Jamshed Memon, Mohd Zaidi Abd Rozan, Mueen Uddin, Adamu
Abubakar, Haruna Chiroma, Dzurllkanian Daud. 2014. Randomized
Text Encryption: a New Dimension in Cryptography. International
Review on Computers and Software (I.RE.CO.S.), Vol. 9, N. 2

61 Journal of Computer Sciences and Applications

[4] Hamid Mirvaziri, Kasmiran Jumari Mahamod Ismail and Zurina
Mohd Hanapi. 2009. Message Based Random Variable Length
Key Encryption Algorithm. Journal of Computer Science 5 (8):
573-578, 2009

[5] Dhananjay S. Phatak, Qiang Tang, Alan T. Sherman, Warren D.
Smith, Peter Ryan, † Kostas Kalpakis. 2014. DoubleMod and

SingleMod: Simple Randomized Secret-Key Encryption with
Bounded Homomorphicity

[6] Orhio Mark Creado, Yiling Wang, Xianping Wu, and Phu Dung
Le. 2009. Probabilistic Encryption – A Practical Implementation,
Fourth International Conference on Computer Sciences and
Convergence Information Technology.

© The Author(s) 2020. This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

