
Journal of Computer Sciences and Applications, 2021, Vol. 9, No. 1, 16-22 
Available online at http://pubs.sciepub.com/jcsa/9/1/2 
Published by Science and Education Publishing 
DOI:10.12691/jcsa-9-1-2 

A Modern Analysis of Aging Machine Learning Based 
IoT Cybersecurity Methods 

Sam Strecker, Rushit Dave*, Nyle Siddiqui, Naeem Seliya 

Department of Computer Science, University of Wisconsin – Eau Claire, Eau Claire, US 
*Corresponding author:  

Received September 04, 2021; Revised October 09, 2021; Accepted October 18, 2021 

Abstract  Modern scientific advancements often contribute to the introduction and refinement of never-before-
seen technologies. This can be quite the task for humans to maintain and monitor and as a result, our society has 
become reliant on machine learning to assist in this task. With new technology comes new methods and thus new 
ways to circumvent existing cyber security measures. This study examines the effectiveness of three distinct Internet 
of Things cyber security algorithms currently used in industry today for malware and intrusion detection: Random 
Forest (RF), Support-Vector Machine (SVM), and K-Nearest Neighbor (KNN). Each algorithm was trained and 
tested on the Aposemat IoT-23 dataset which was published in January 2020 with the earliest of captures from 2018 
and latest from 2019. The RF, SVM, and KNN reached peak accuracies of 92.96%, 86.23%, and 91.48%, 
respectively, in intrusion detection and 92.27%, 83.52%, and 89.80% in malware detection. It was found all three 
algorithms are capable of being effectively utilized for the current landscape of IoT cyber security in 2021. 
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1. Introduction 

The number of Internet of Things (IoT) devices 
connected to the Internet has exceeded fifty billion devices 
since 2020 [1,2]. This results in a dire need to continually 
advance the cyber security field as stated in [3]. 
Previously vetted and approved security techniques  
need to be continually re-tested with new datasets. New 
and emerging technologies may deviate from past 
implementations and introduce new outlets for malicious 
users to exploit. For example, Google’s Home Mini uses a 
hard-coded DNS to try and deter users from DNS based 
adblocking, but the result is a new security threat. The 
device overrides the DNS set on the local network, and in 
this case uses Google’s DNS (8.8.8.8/8.8.4.4). Provided 
more information, a malicious user can now exploit the 
device with a current zero day named ‘Name:Wreck’. This 
is simply one example of thousands that cyber security 
analysts need to be aware of first before it is in the hands 
of a malicious user. This article will compare the 
effectiveness of three different machine learning based 
cyber security techniques on the Aposemat Iot-23 dataset 
published in January of 2020 [4]. Further, we produce  
an analysis of aging machine learning based IoT 
cybersecurity methods on newly published datasets that 
bring forth never-before seen IoT devices and their 
accompanying technologies/protocols, as seen in [5]. We 

test RF, SVM, and K-Nearest Neighbor algorithms to be 
used for IoT cyber security in the present year of 2021. 
Section 2 will discuss previous application of IoT and 
machine learning in academic literature, Section 3 will 
discuss in detail the dataset and algorithms we use in this 
article, Sections 4 and 5 serve as an exhibition and 
analysis of our observed results, and Section 6 
summarizes and concludes our work. 

2. Background 

The phrase “Internet of Things” has been around for 
over two decades. Created in 1999, [6] initially used the 
term to refer to the use of radio-frequency identification 
tags in an assembly line. Today the phrase IoT is more 
encompassing and includes any device that has the ability 
to collect data and communicate this data via the internet 
[7,8,9]. Due to its usefulness and versatility, IoT devices 
became deeply integrated into the workings of society. 
From healthcare, to e-commerce, to one’s own living 
room, IoT devices are abundant in presence. For instance, 
the city of Padua, in Italy, utilizes IoT networks to 
monitor carbon monoxide levels, traffic flow, noise levels, 
streetlights, power usage, and much more as stated in [10]. 
With the rise of technological prowess, so does the 
sophistication of malicious attacks on these technologies, 
thus making the need for stronger cyber security methods 
imperative [11]. New methods to protect IoT devices from 
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malicious users are continuously being developed, 
however, developing well-made cyber security methods 
for IoT devices comes with its own unique challenges. IoT 
devices are very resource limited, similar in device 
signature, prone to botnet attacks, and can be found in 
edge computing scenarios. This results in the necessity for 
unique cyber security that can accommodate these 
limitations. Researchers in [9] and [12] studied the 
effectiveness of (CoAP) - the constrained application 
protocol - which presented a cost-effective solution to 
protect data transmission within IoT networks in real-time. 
Through the optimization of this protocol, what would 
have normally been unachievable with current cyber 
security techniques was proven possible in [9] and [12] 
with accuracy rates reaching a peak of 97%. Overall, IoT 
cybersecurity could be greatly improved when compared 
to other areas like anti-fraud for online transactions [13]. 
With the ever-increasing number of IoT devices on the 
internet, the occurrences of botnet attacks are growing 
proportionally to the volumetric traffic of each attack in 
accordance with [11]. [14] exhibited the power of botnets 
when a peak Distributed Denial of Service (DDOS) attack 
with a bandwidth of 1.1Tb/s targeted the cloud service 
company Cloudflare, pushing it over the limit to what 
Cloudflare could mitigate resulting in large network 
outages. Current IoT security techniques rely on three 
main machine learning algorithms for device identification, 
intrusion attacks, and malware identification: SVMs, RFs, 
and KNNs. In essence, these three algorithms can be 
effectively utilized as watch dogs on IoT networks to 
prevent attacks in real-time. This study examines the 
effectiveness of RFs, SVMs, and KNNs for IoT 
cybersecurity against modern datasets. 

According to [3], the use of supervised learning 
techniques like SVM, KNN, RF, Naïve Bayes, and 
artificial neural networks (ANN) are effective in 
identifying network traffic of IoT devices. More 
specifically, they have the capability to detect network 
intrusions as well as spoofing attacks. To identify Denial 
of Service (DoS) attacks, the use of multivariate 
correlation is needed. It extracts the geometrical 
correlations of network traffic features making the model 
92% more accurate. Excluding deep learning, the 
researchers concluded that the RF performed most 
optimally for malware detection and KNN performed best 
for network intrusion. In [15], researchers set out to find a 
machine learning algorithm that had the ability to detect 
DDOS attacks, also seen in [16]. They chose to study 
KNN, SVM with Linear Kernel, Decision Tree (DT), and 
RF. The dataset was created from three IoT devices from 
ten minutes of captured network traffic. The models were 
trained using 85/15 split training and used the Sci-kit learn 
Python library. The researchers concluded stateless 
features were more beneficial to classification than 
stateful features as well as observing RF performing the 
best and the SVM the worst [15]. Similarly in [17], the 
researchers found the SVM performed the worst in 
comparison to KNN and RF [18]. In the context of binary 
classification, they were able to achieve accuracies over 
99% with a RF. The researchers also found the Radial 
Basis Function kernel for SVMs worked almost twice as 
well as the Linear kernel. Following the same trend in [19], 
researchers utilized Google’s MapReduce as a backbone 

for network traffic feature extraction, translation, and 
analysis of changing network features. They tested seven 
different machine learning based algorithms and RF 
performed the best with a precision of 0.9994 with SVM 
trailing far behind at 0.7714. Researchers in [19] set out to 
test the effectiveness of five different algorithms for 
intrusion detection. They sourced a dataset from Kaggle 
and selected 8 different feature vectors to learn from. 
Training was complete with 80/20 split testing as well as 
five-fold cross validation referenced in [20]. They found 
RF performs optimally with larger datasets opposed to 
SVM which regressed in performance. The researchers 
concluded RFs, Decision Trees, and KNNs could all 
sufficiently classify and differentiate between normal and 
attack data and found average accuracy rates observed in 
the field of IoT to be around 90% for most machine 
learning algorithms. 

3. Methodology 

The first step in searching for a dataset was verifying it 
met the criteria of being published within a year of 2021. 
After comparing many datasets, our study concluded the 
‘Aposemat Iot-23’ dataset sufficiently met all our criteria. 
Modern datasets are integrable to the quality of results as 
recently published datasets will include newer devices 
which current cyber security systems haven’t interacted 
with before. This leads to untested circumstances and 
uncovers new exploit surfaces. The study injected the 
dataset to a Pandas (v1.2.4) framework within the Spyder 
IDE (v4.2.3) running the Scikit-learn toolkit (v0.24). 
Training was performed on a PC with the following 
specifications: Windows 10 (10.0.18363), Intel i7-6800K, 
32Gb RAM, and RTX2070 (driver version DCH 466.11). 
The SVM was tested with both RBF and Linear kernels to 
account for any variations or performance increases. The 
study implemented holdout validation with 60/40, 70/30, 
and 80/20 splits for training the data for both malware 
detection and intrusion detection to verify the validity of 
our trained models. The provided Receiver Operating 
Characteristic (ROC) curves and confusion matrixes are 
the averaged results from each split. 

This article optimized the feature sets for each 
algorithm for both malware and intrusion detection to get 
the best performance from each algorithm. To optimize 
the data, the process started by assessing all the available 
features in our labeled traffic captures as pictured in 
Figure 1 and Figure 2. Some features like missed_bytes or 
resp_pkts were not useful in identifying malware or 
intrusion-based attacks so they were immediately 
dismissed for testing. This is due to the fact that these 
features do not contribute to the probability of identifying 
a malware or intrusion-based attack with simpler machine 
learning algorithms. However, note that inclusion of these 
features may become useful with deep learning algorithms 
or more advanced datasets that can leverage more data 
points. Each algorithm shared the same base set of capture 
features and some algorithms like the RF worked better 
with an additional feature added. In the case of malware 
detection, the RF had lower false positive rates and higher 
accuracies when the features proto and orig_bytes were 
added (Figure 2). However, the proto feature increased 
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false positive rates significantly in the KNN and SVM as 
malware and non-malicious programs often use the same 
UDP and TCP protocols. Additional testing should train 

with Peer2Peer based traffic and anonymized MAC 
addresses which has become common practice within the 
field of cybersecurity. 

 

Figure 1. Feature selection for intrusion detection 

 

Figure 2. Feature selection for malware detection 

3.1. Malware Detection 
To properly identify malware on the local IoT network, 

our testing utilized a base feature set of uid, resp_ip_bytes, 
resp_pkts, orig_ip_pkts, history, resp_bytes, and duration 
as noted in Figure 1. The uid feature allowed the 
researchers to track a device across the local network 
regardless of if the device’s IP changes or techniques to 
spoof or mask the device’s identity occur. The 
resp_ip_bytes and resp_bytes sizes are typically very 
small or zero when malware is present on the network. 
Contrary to resp_ip_bytes, certain malware increases the 
orig_ip_pkts total, making this a good identifying metric. 
As for the history feature, it had minimal to slight effects 
on lowering false positive rates. Since the results were not 
negatively impacted, this article kept it as a feature as 
future testing may utilize it. Finally, the duration is a great 
feature to use as malware generally has very long 
connection times. A benign connection may have a 
connection length of 0.001482 seconds while malware is 

at 3.151458 seconds, giving a clear flag of suspicious 
activity.  

3.2. Intrusion Detection 
Similarly to malware detection, intrusion detection uses 

the uid to better track the device across the local IoT network. 
They also share the duration feature to identify suspicious 
lengths of time indicative of malicious intent. The timestamps 
(TS) feature is unique to intrusion-based attacks as a 
vertical or horizontal port scan will have very similar TS 
from the same device across many IPs or ports on the 
local network, depending on attack type. To better utilize 
the TS feature, it needs to be paired with an identifier for 
cross referencing. In this case, the id.resp_p and if.orig_h 
features can be used to determine the IP address of the 
origin device and IP of the destination device. This 
contributed to higher accuracies as similar timestamps can 
be compared against host and receiving IP addresses with 
connection duration to produce significant results. 
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4. Results and Analysis 

This study found the RF algorithm to be the best 
performing as seen in Table 1. It boasted high accuracies 
of 92.96% and 92.27% in intrusion and malware detection, 
respectively, and lowest overall false positive rates. The 
SVM was found to perform more optimally for malware 
detection with the Linear kernel and for intrusion 
detection with the RBF kernel. The KNN was the second-
best performing algorithm, following closely behind RF in 
intrusion detection and malware detection with F1-scores 
within 3% of the RF and accuracies of 91.48% and 
89.80%. With the exclusive features selected in this article, 
we were able to identify horizontal and vertical port scans 
as well as malware on an IoT network. The authors of the 
dataset labeled the traffic as benign or malicious, so this 
article was able to validate our results for accuracies and 
false negatives rather than relying on timely lookups that 
are prone to human error. Our research also concluded that 
the RF had a more consistent ROC curve across both 
scenarios compared to the KNN and SVM. The 
underlying factors to contribute to this are not directly 
known as the SVM showed irregular inconsistencies, 
potentially from the different kernels used between 
malware and intrusion detection as highlighted in [20]. 
Through various testing and validation methods, this study 
was able to conclude that aging machine learning 
algorithms are still effective at identifying malware and 
intrusion detection for IoT devices and networks. Table 1 
through 2 exhibit the averaged results for these algorithms. 

Table 3 and Table 4 highlight a low-level comparison 
of the three algorithms tested, all of which have the 
combined averages of the 60/40, 70/30, and 80/20 data 
splits. 

5. Discussion 

As [3,21] previously found, the RF was the best 
performing algorithm out of the three tested. The 
confusion matrices and ROC curves of our results are seen 
in Figure 3 and Figure 4. The visualization of our results 

assists in better understandings of the data and its 
granularity. The ROC curve measures the ratio between 
the true and false positive rates, with higher ROC values 
indicating the algorithm can effectively distinguish 
between positive instances in the data; in the context of 
our experiment, if a device is benign or malicious. A 
comparison between the area below the ROC curve for the 
SVM, KNN and RF can also be seen in Figure 4. As 
stated before, the numbers present are averages of 60/40, 
70/30, and 80/20 data splits to reduce bias. 

These results in Table 2, Table 3, and Table 4 support 
the observations from [18,22] that the differences in 
kernel had a large impact on the results and that SVMs 
perform the worst in intrusion detection. We observed 
similar results in our experiment as [15], where the authors 
successfully created a system that can identify malicious 
or anomalous data in real-time and demonstrated how RFs 
outperformed the other for algorithms tested. This is also 
seen in [19] and [23]. Similarly to our results, [15] also 
demonstrated the RFs optimal performance when fed 
stateless feature sets only. [19] and [23] were also able to 
accurately identify attack types based upon the data and 
identify horizontal and vertical port scans with the feature 
sets, which we successfully replicated. This is observed in 
the high true positive rate and low false negative scores 
across all of our algorithms in our confusion matrices. The 
determination can be safely made that each algorithm is 
suitable for modern-day malware and intrusion detection, 
an improved and refined conclusion to results in [24,25].  

Table 1. Intrusion detection averages 

Algorithm Accuracy F1 Recall TP FN 

RF .9296 .9588 .9403 .9503 .0318 

KNN .9148 .9416 .9293 .9191 .0356 

SVM .8623 .8671 .8614 .8623 .0726 

Table 2. Malware detection averages 

Algorithm Accuracy F1 Recall TP FN 
KNN .8980 .9280 .8971 .8982 .0411 
RF .9227 .9393 .9330 .9193 .0372 

SVM .8352 .8559 .8298 .8352 .0502 
 

Table 3. Malware detection comparison 

Algorithm Methodology Results Pros Cons 

RF Detect malware with 9 distinct 
network features 

Average F1 score of 
0.9415 

Best performing with 
highest accuracies 

60:40 False negative 
could be improved 

KNN Feature set reduced by 3 to 
improve recall and accuracy 

High average ROC 
curve area of 0.881 

High F1 and low false 
negatives 

Feature set needed to be 
reduced to improve 

accuracy 

SVM (Linear) 
Detect malware with feature set 
of size 6 to improve accuracies 

and recall 

Average accuracy of 
88.61% 

High average true positive 
of 86.26% 

Highest false positive 
rate 

Table 4. Intrusion detection comparison 

Algorithm Methodologies Results Pros Cons 

RF 
Identify horizontal port scans by 

observing port, time, IP/UID, 
protocol, and service 

RF was the best performing 
algorithm 

Lowest false negative 
rates 

60:40 training F1 score 
was 0.9313 

KNN 
Identify horizontal port scans by 

observing port, time, IP/UID, 
protocol, and service 

KNN was the second-best 
performing algorithm High recall rates Too many features can 

lower accuracy 

SVM (RBF) 
Identify horizontal port scans by 

observing port, time, IP/UID, 
protocol, and service 

SVM had an average recall 
of 0.856 

High precision and F1 
scores 

Recall could be 
improved upon 
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Figure 3. Confusion matrix comparison 

 

Figure 4. ROC curve comparison 

6. Conclusion 
This article has discussed, as noted in Table 5, and 

tested the effectiveness of three machine learning 
algorithms used in IoT cybersecurity for malware and 
intrusion detection trained on a modern dataset. This study 
highlighted the importance of maintaining and evolving 
the cybersecurity protocols for IoT devices and networks 
to prevent malicious attackers. Some limitations in our 
study include testing more SVM kernels, such as 
polynomial kernels, to better optimize SVM results. We 
believe that future kernel testing may lead to much greater 
accuracies with the SVM for malware detection. This 
could also address the aforementioned ROC curve 

inconsistencies. A small improvement for future studies 
that may be overlooked is combing datasets to allow for 
more diversity in networking setups, devices, and 
protocols to allow for more variables to be tested against. 
Larger datasets may also more accurately represent the 
entropy present in real-world implementations. Another 
limitation is the age of the data within the dataset this 
article used. Even though the dataset was published in 
2020, some of the captures within the dataset date back as 
far as 2018. This presents the issue of trained models 
lagging up to three years behind current IoT networks. A 
three-year window allows for many changes to IoT 
devices like firmware changes, OS version updates, 
hardware revisions, and new protocols; all of which can 
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lead to potential exploits requiring constant supervision of 
cybersecurity measures in place to maintain their 
effectiveness. Our study explored RFs efficacy with 
modern IoT data and confirmed that it continues to be the 

most optimal algorithm to use for IoT cybersecurity. 
While the KNN and SVM did not perform better than the 
RF, they can still be effectively used for malware and 
intrusion detection in today’s IoT networks. 

Table 5. Comparison in Existing Results 

Article Methodologies Results Comparison to Our Results 

[3] 

Collected data from multiple IoT and n on-
IoT devices, extracted a set of features from 

the sessions, then trained, optimized, and 
tested several classifiers using RF 

RF correctly identifies a session’s 
device of origin 99.28% of the time 

using only the first optimized 
number of consecutive sessions 

RF similarly outperformed all other classifiers in [3] 
as in our results, however they achieved a higher 

accuracy compared to our accuracy rate of 92.96% 

[21] 

Collected data from 9 different IoT devices, 
extracted a set of features from the sessions 

and then trained, optimized, and tested a 
classifier using RF with the data. 

Identified a session’s device of 
origin with an accuracy of 99% and 

correctly identified a session as 
unknown 96% of the time using a 

window of 20 sessions. 

RF was found to be most accurate in both studies. 
This study can be used to increase RD accuracies in 

our results 

[15] 

Collect data from three different IoT devices 
and data from a simulated DoS attack to the 
dataset. Then, extract features and train and 

test the five classifiers with the data. 

All the classifiers reached accuracy 
rates of 99.9% except for the Linear 

SVM with 99.1%. RF performed 
the best both with and without 

stateful features. 

The highest RF accuracy our results obtained was 
98% while the results in [16] were over 99%. 

Reducing our feature set may help increase accuracy. 

[8] 

Uses a SVM as to not use physical keys. A 
physical layer authentication scheme using 

machine learning to improve spoofing 
detection 

Hash functions can be used to 
speed up identification and game 
theory could be used to increase 

accuracy over 90% 

Our SVM was found to be the least accurate with 
86.23% and 83.52% in intrusion and malware 

detection, respectively. It boasts speed improvements 
at the cost of added complexity 

[19] 

Used a simulated dataset to extract and train 
five classifiers with the data to identify 

whether its benign or malicious, as well as 
other attacks 

ANN, RF, and DT all reached 
accuracies of 99.4% and F1-Scores 

of 0.99. 

Our highest accuracy was 92.96% with the RF 
selecting 6 features. Our sets could be reduced again 
from 6 to 5 features to approach similar accuracies. 
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